题目内容

数列{an}满足条件a1=1,an=an-1+(
1
3
n-1(n=2,3,…).
(1)求{an};
(2)求a1+a2+a3+…+an
考点:数列递推式
专题:等差数列与等比数列
分析:(1)由已知得a1=1,an-an-1=(
1
3
n-1,由此利用累加法能求出an
(2)由an=
3
2
-
1
2•3n-1
,利用分组求和法能求出a1+a2+a3+…+an
解答: 解:(1)∵数列{an}满足条件a1=1,an=an-1+(
1
3
n-1(n=2,3,…),
∴an-an-1=(
1
3
n-1
∴an=a1+a2-a1+a3-a2+…+an-an-1
=1+
1
3
+(
1
3
2+…+(
1
3
n-1
=
1-
1
3n
1-
1
3
=
3
2
-
1
2•3n-1

(2)a1+a2+a3+…+an
=
3
2
n
-
1
2
[1+
1
3
+(
1
3
2+…+(
1
3
n-1]
=
3
2
n
-
1
2
×
1-
1
3n
1-
1
3
=
3
2
n
-
3
4
-
1
4•3n-1
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意累加法和分组求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网