题目内容

设p:实数x满足x2-4ax+3a2≤0,其中a<0;q:实数x满足x2+6x+8>0.若p是q的充分不必要条件,求a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:求出命题的等价条件,利用充分条件和必要条件的定义建立条件关系即可得到结论.
解答: 解:由x2+6x+8>0得x>-2或x<-4,即q:x>-2或x<-4,
由x2-4ax+3a2≤0(a>0),得(x-a)(x-3a)≤0(a<0),即3a≤x≤a,即p:3a≤x≤a,
若p是q的充分不必要条件,
则a<-4或3a>-2,
解得a<-4或-
2
3
<a<0,
即a的取值范围是a<-4或-
2
3
<a<0.
点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网