题目内容
将甲、乙、丙等六人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为( )
| A、18 | B、15 | C、12 | D、9 |
考点:计数原理的应用
专题:排列组合
分析:本题要先安排乙和丙两人,其安排方法可以分为两类,一类是两者之一在高一,另一个在高二,另一类是两者都在高二,在每一类中用分步原理计算种数即可.
解答:
解:若乙和丙两人有一人在高一,另一人在高二,则第一步安排高一有2种安排方法,第二步安排高二,从三人中选一人有三种方法,第二步余下两人去高三,一种方法;故此类中安排方法种数是2×3=6,
若乙和丙两人在高二,第一步安排高一,有三种安排方法,第二步安排高三,余下两人去高三,一种安排方法,故总的安排方法有3×1=3,
综上,总的安排方法种数有6+3=9种;
故选:D.
若乙和丙两人在高二,第一步安排高一,有三种安排方法,第二步安排高三,余下两人去高三,一种安排方法,故总的安排方法有3×1=3,
综上,总的安排方法种数有6+3=9种;
故选:D.
点评:本题考查分步原理与分类原理的应用,求解本题关键是根据实际情况选择正确的分类标准与分步标准,把实际问题的结构理解清楚.
练习册系列答案
相关题目
i+i2+i3+…+i2014=( )
| A、1+i | B、-1-i |
| C、1-i | D、-1+i |
设x,y满足约束条件
,若目标函数z=ax+by(a,b>0)的最大值是12,则a2+b2的最小值是( )
|
A、
| ||
B、
| ||
C、
| ||
D、
|
一个几何体的三视图如图所示,则该几何体的体积为( )

| A、1 | ||
B、
| ||
C、
| ||
D、
|
设a=log23,b=log43,c=sin90°,则( )
| A、a<c<b |
| B、b<c<a |
| C、c<a<b |
| D、c<b<a |
已知
=(1,2,-1),则向量
的模的大小为( )
| a |
| a |
| A、4 | ||
| B、6 | ||
C、
| ||
D、
|
在星期一至星期五的5天内安排2门不同的测试,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数( )
| A、6 | B、8 | C、12 | D、16 |