题目内容

若关于x的方程25-|x+1|-4×5-|x+1|=m有实根,则实数m的取值范围是(  )
A、m<0B、m≥-4
C、-4≤m<0D、-3≤m<0
考点:根的存在性及根的个数判断
专题:计算题,转化思想,函数的性质及应用
分析:本题考查的是根的存在性问题以及根的个数问题.在解答时可以先将t=5-|x+1|看为一个整体,将问题转化为分析方程t2-4t=m有实根时,求m的范围.即可获得问题的解答.
解答: 解:令t=5-|x+1|
则关于x的方程25-|x+1|-4×5-|x+1|=m有实根即关于t的方程t2-4t=m有实根,
又因为0<t≤1,
且m=t2-4t=(t-2)2-4,
∴m的范围是[-3,0).
故选D.
点评:本题考查的是根的存在性问题以及根的个数问题.在解答的过程当中充分体现了问题转化的思想、整体代换的思想以及数形结合的思想.值得同学们体会反思.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网