题目内容
下列4个命题:
①“如果x+y=0,则x、y互为相反数”的逆命题
②“如果x2+x-6≥0,则x>2”的否命题
③在△ABC中,“A>30°”是“sinA>
”的充分不必要条件
④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈Z)”
其中真命题的序号是 .
①“如果x+y=0,则x、y互为相反数”的逆命题
②“如果x2+x-6≥0,则x>2”的否命题
③在△ABC中,“A>30°”是“sinA>
| 1 |
| 2 |
④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈Z)”
其中真命题的序号是
考点:命题的真假判断与应用
专题:简易逻辑
分析:对于①:先求得逆命题,再判断真假,由相反数的定义易知①正确;
对于②:先求得否命题,再判断真假,结合二次不等式的解法易知其否命题为真;
对于③:A>30°,可以举一个反例否定即可;
对于④:若为奇函数,则应有f(0)=0,能否得到φ=kπ;反之当φ=kπ时,判断是否有f(-x)=f(x)即可.
对于②:先求得否命题,再判断真假,结合二次不等式的解法易知其否命题为真;
对于③:A>30°,可以举一个反例否定即可;
对于④:若为奇函数,则应有f(0)=0,能否得到φ=kπ;反之当φ=kπ时,判断是否有f(-x)=f(x)即可.
解答:
解:对于①:其逆命题是:如果x、y互为相反数,则x+y=0,显然正确;
对于②:否命题是“如果x2+x-6<0,则x≤2”,由x2+x-6<0得-3<x<2,此时x≤2显然成立,故②为真;
对于③:当A=150°时,sinA=
,不满足结论,故③为假;
对于④:当函数f(x)=tan(x+φ)为奇函数时,结合图象可知,当x=0时,f(0)=0或不存在,则应有φ=kπ或kπ+
,k∈Z,故不满足充分性,故④错误.
故答案为:①②.
对于②:否命题是“如果x2+x-6<0,则x≤2”,由x2+x-6<0得-3<x<2,此时x≤2显然成立,故②为真;
对于③:当A=150°时,sinA=
| 1 |
| 2 |
对于④:当函数f(x)=tan(x+φ)为奇函数时,结合图象可知,当x=0时,f(0)=0或不存在,则应有φ=kπ或kπ+
| π |
| 2 |
故答案为:①②.
点评:本题综合考查了命题真假的判断方法,主要侧重于基础知识考查,难度并不大.
练习册系列答案
相关题目
在等比数列{an}中,a1=1,公比|q|≠1.若am=a1a2a3a4a5,则m=( )
| A、9 | B、10 | C、11 | D、12 |
在扇形OAB中,∠AOB=120°,P是
上的一个动点,若
=x
+y
,则
+
的最小值是( )
| AB |
| OP |
| OA |
| OB |
| 1 |
| x |
| 1 |
| y |
A、
| ||
| B、2 | ||
C、2
| ||
| D、4 |
由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=x2+bx+c的图象经过(1,0),…,求证:这个二次函数的图象关于直线x=2对称.根据已知信息,题中二次函数图象不具有的性质是( )
| A、过点(3,0) |
| B、顶点(2,-2) |
| C、在x轴上截线段长是2 |
| D、与y轴交点是(0,3) |
集合A={x|
≥0}B={x||x-1|<3},则A∩B=( )
| x-1 |
| x+1 |
| A、(-2,-1) |
| B、[1,4) |
| C、(-2,-1)∪[1,4) |
| D、(-2,4) |