题目内容
已知等差数列{an}的通项公式an=2-n,则数列{
}的前n项和为 .
| an |
| 2n-1 |
考点:数列的求和
专题:等差数列与等比数列
分析:令bn=
=
,Sn=b1+b2+…+bn=
+
-
-
-…-
①,
Sn=
+0-
-
-…-
-
②,利用错位相减法求和即可求得答案.
| an |
| 2n-1 |
| 2-n |
| 2n-1 |
| 1 |
| 21-1 |
| 0 |
| 21 |
| 1 |
| 22 |
| 2 |
| 23 |
| n-2 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 23 |
| 2 |
| 24 |
| n-3 |
| 2n-1 |
| n-2 |
| 2n |
解答:
解:∵an=2-n,
令bn=
=
,
则Sn=b1+b2+…+bn=
+
-
-
-…-
,①
Sn=
+0-
-
-…-
-
,②
①-②得:
Sn=
-
-
-
-…-
+
=
-
+
=
+
=
,
∴Sn=
.
故答案为:
.
令bn=
| an |
| 2n-1 |
| 2-n |
| 2n-1 |
则Sn=b1+b2+…+bn=
| 1 |
| 21-1 |
| 0 |
| 21 |
| 1 |
| 22 |
| 2 |
| 23 |
| n-2 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 23 |
| 2 |
| 24 |
| n-3 |
| 2n-1 |
| n-2 |
| 2n |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n-1 |
| n-2 |
| 2n |
=
| 1 |
| 2 |
| ||||
1-
|
| n-2 |
| 2n |
=
| 1 |
| 2n-1 |
| n-2 |
| 2n |
| n |
| 2n |
∴Sn=
| n |
| 2n-1 |
故答案为:
| n |
| 2n-1 |
点评:本题考查数列的求和,主要考查数列的错位相减法求和,考查运算能力,属于中档题.
练习册系列答案
相关题目
函数y=
的值域是( )
| 1 |
| tan2x-2tanx+2 |
| A、(-∞,1] | ||
| B、(0,1] | ||
| C、[1,+∞) | ||
D、[
|
函数f(x)=x3-3x的单调递减区间是( )
| A、(∞,-1) |
| B、(1,+∞) |
| C、(-∞,-1)∪(1,+∞) |
| D、(-1,1) |