题目内容
巳知各项均为正数的等差数列{an}前三项的和为27,且满足a1a3=65.数列{bn}的前n项和为Sn,且对一切正整数n,点(n,Sn)都在函数f(x)=
-
的图象上.
(Ⅰ) 求数列{an}和{bn}的通项公式;
(Ⅱ)设cn =anbn,求数列{cn}的前n项和Tn.
| 3x+1 |
| 2 |
| 3 |
| 2 |
(Ⅰ) 求数列{an}和{bn}的通项公式;
(Ⅱ)设cn =anbn,求数列{cn}的前n项和Tn.
考点:数列与函数的综合,数列的求和
专题:综合题,等差数列与等比数列
分析:(1)根据等差数列,等比数列公式求解即可得出通项公式,就能够的出答案.
(2)运用错位相减法求解数列的和,分类讨论求解∝
(2)运用错位相减法求解数列的和,分类讨论求解∝
解答:
解:(1)∵a1+a2+a3=27,
∴a2=9,
a1a3=(9-d)(9+d)=81-d2=65,
d=4,d=-4(舍去),
an=a2+(n-2)×4=4n+1,
Sn=
×3,很明显的等比数列求和,bn=×3n-1=3n
(2)设cn =anbn,数列{cn}的前n项和Tn.
Tn=5×31+9×32+13×33+…+(4n+1)×3n①
3Tn=5×32+9×33+13×34+…+(4n+1)×3n+1②
由①-②可得:
-2Tn=5×3+4×(32+33+…+3n)-(4n+1)×3n+1
∴Tn=
+
,
故数列{cn}的前n项和Tn=
+
,
∵dn=3n+(-1)n-1(2n+1+2)λ,
dn+1=3n+1+(-1)n(2n+1+2)λ,
∴dn+1-dn=2×3n+(-1)n(3×2n+1+4)λ,
当n为奇数时,2×3n-(3×2n+1+4)λ>0,
当n为奇数时,2×3n-(3×2n+1+4)λ>0,
λ<
=
,
n变大时,
变大,
即λ<
=
,
当n为偶数时,2×3n+(3×2n+1+4)λ>0,
λ>-
=-
,
n变大时,-
变小,
即λ>-
=-
,
∴a2=9,
a1a3=(9-d)(9+d)=81-d2=65,
d=4,d=-4(舍去),
an=a2+(n-2)×4=4n+1,
Sn=
| 3n-1 |
| 3-1 |
(2)设cn =anbn,数列{cn}的前n项和Tn.
Tn=5×31+9×32+13×33+…+(4n+1)×3n①
3Tn=5×32+9×33+13×34+…+(4n+1)×3n+1②
由①-②可得:
-2Tn=5×3+4×(32+33+…+3n)-(4n+1)×3n+1
∴Tn=
| 3 |
| 2 |
| (4n-1)×3n+1 |
| 2 |
故数列{cn}的前n项和Tn=
| 3 |
| 2 |
| (4n-1)×3n+1 |
| 2 |
∵dn=3n+(-1)n-1(2n+1+2)λ,
dn+1=3n+1+(-1)n(2n+1+2)λ,
∴dn+1-dn=2×3n+(-1)n(3×2n+1+4)λ,
当n为奇数时,2×3n-(3×2n+1+4)λ>0,
当n为奇数时,2×3n-(3×2n+1+4)λ>0,
λ<
| 3n |
| 3×2n+2 |
| 1 | ||||
3×(
|
n变大时,
| 1 | ||||
3×(
|
即λ<
| 3 |
| 6+2 |
| 3 |
| 8 |
当n为偶数时,2×3n+(3×2n+1+4)λ>0,
λ>-
| 3n |
| 3×2n+2 |
| 1 | ||||
3×(
|
n变大时,-
| 1 | ||||
3×(
|
即λ>-
| 9 |
| 12+2 |
| 9 |
| 14 |
点评:本题考查了等差数列,等比数列的和,裂项方法求解,运算量大,属于难题.
练习册系列答案
相关题目
已知集合A={-2,-1,1,2},B={x|x≥2或x≤-1},则A∩B=( )
| A、{-1,1,2} |
| B、{-2,-1,2} |
| C、{-2,1,2} |
| D、{-2,-1,1} |
已知集合M={x|
≥0},集合N={x|x-1<0},则M∩N=( )
| x+1 |
| A、f(x)=ln|x-1| |
| B、{x|x<1} |
| C、{x|-1<x<1} |
| D、{x|-1≤x<1} |