题目内容
17.若4≤a≤8,0≤b≤2,则a+b的取值范围是( )| A. | (4,10) | B. | [4,10] | C. | (6,8) | D. | [6,8] |
分析 直接利用不等式的简单性质计算即可.
解答 解:4≤a≤8,0≤b≤2,则a+b∈[4,10].
故选:B.
点评 本题考查不等式的简单性质的应用,是基础题.
练习册系列答案
相关题目
8.先把函数y=cosx的图象上所有点向右平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的函数图象的解析式为( )
| A. | y=cos(2x+$\frac{π}{3}$) | B. | y=cos(2x-$\frac{π}{3}$) | C. | y=cos($\frac{1}{2}$x+$\frac{π}{3}$) | D. | y=cos($\frac{1}{2}$x-$\frac{π}{3}$) |
2.已知曲线C的方程为$\frac{x^2}{a^2}-{y^2}$=1(a∈R且a≠0),则“a>1”是“曲线C是焦点在x轴上的双曲线”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
7.若直线y=x+m与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有两个公共点,则m的取值范围是( )
| A. | (-5,5) | B. | (-2,2) | C. | (-$\sqrt{7}$,$\sqrt{7}$) | D. | (-$\sqrt{3}$,$\sqrt{3}$) |