题目内容
已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),
(1)求数列{an}的通项公式;
(2)令bn=
,求数列bn的前n项和Tn.
(1)求数列{an}的通项公式;
(2)令bn=
| 1 |
| anan+1 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)根据an与Sn的关系,即可求数列{an}的通项公式;
(2)求出bn=
的通项公式,利用裂项法即可求数列bn的前n项和Tn.
(2)求出bn=
| 1 |
| anan+1 |
解答:
解:(1)∵Sn=n2+2n+1,
∴当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,
当n=1时,a1═S1=1+2+1=4,
数列{an}的通项公式an=
;
(2)令bn=
,则b1=
=
,
当n≥2时,求bn=
=
=
(
-
),
则数列bn的前n项和Tn=
+
(
-
+
-
+…+
-
)=
+
(
-
)=
+
×
-
×
=
-
.
∴当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,
当n=1时,a1═S1=1+2+1=4,
数列{an}的通项公式an=
|
(2)令bn=
| 1 |
| anan+1 |
| 1 |
| a1a2 |
| 1 |
| 4×5 |
当n≥2时,求bn=
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
则数列bn的前n项和Tn=
| 1 |
| 4×5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2n+3 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2n+3 |
| 1 |
| 2 |
| 3 |
| 20 |
| 1 |
| 4n+6 |
点评:本题主要考查数列通项公式的求解以及数列求和的计算,利用裂项法是解决本题的关键,考查学生的运算能力.
练习册系列答案
相关题目
设随机变量ξ的分布列为p(ξ=k)=
(k=2,4,6,8,10),则Dξ等于( )
| 1 |
| 5 |
| A、5 | B、10 | C、8 | D、16 |