题目内容
已知点P(x,y)的坐标满足
,则z=x+2y的最大值为 .
|
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.
解答:
解:由约束条件作出可行域如图,

化目标函数z=x+2y为直线方程的斜截式y=-
x+
.
由图可知,当直线y=-
x+
过可行域内的点A时,直线在y轴上的截距最大,z最大.
联立
,得A(1,3).
∴zmax=1+2×3=7.
故答案为:7.
化目标函数z=x+2y为直线方程的斜截式y=-
| 1 |
| 2 |
| z |
| 2 |
由图可知,当直线y=-
| 1 |
| 2 |
| z |
| 2 |
联立
|
∴zmax=1+2×3=7.
故答案为:7.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
已知a,b,c是三角形的三边,且直线ax+by+c=0与圆x2+y2=1相离,则此三角形( )
| A、是锐角三角形 |
| B、是直角三角形 |
| C、是钝角三角形 |
| D、不确定 |
设向量
,
满足|
+
|=
,|
|=1,|
|=2,则
•
等于( )
| a |
| b |
| a |
| b |
| 6 |
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知函数f(x)=x3+ax2-9x+1,下列结论中错误的是( )
| A、?x0∈R,f(x0)=0 |
| B、“a=3”是“-3为f(x)的极大值点”的充分不必要条件 |
| C、若x0是f(x)的极小值点,则f(x)在区间(x0,+∞)单调递增 |
| D、若3是f(x)的极值点,则f(x)的单调递减区间是(-1,3) |
已知集合M={x|x2=1},集合N={x|ax=1},若N?M,a的值是( )
| A、1 | B、-1 |
| C、1或-1 | D、0,1或-1 |