题目内容
函数f(x)=
sin2x最小值是( )
| 1 |
| 2 |
| A、-1 | ||
B、-
| ||
C、
| ||
| D、1 |
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:根据正弦函数的图象和性质即可得到结论.
解答:
解:∵sin2x∈[-1,1],
∴当sin2x=-1,函数f(x)取得最小值为-
,
故选:B
∴当sin2x=-1,函数f(x)取得最小值为-
| 1 |
| 2 |
故选:B
点评:本题主要考查三角函数值的最值的计算,根据正弦函数的性质是解决本题的关键.
练习册系列答案
相关题目
定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4)时,f(x)=2x,则f(sin1)与f(cos1)的大小关系为( )
| A、f(sin1)<f(cos1) |
| B、f(sin1)=f(cos1) |
| C、f(sin1)>f(cos1) |
| D、不确定 |
下列函数中是幂函数的是( )
| A、y=2x2 | ||
B、y=
| ||
| C、y=x2+x | ||
D、y=-
|
已知数列{an}的前n项和为Sn=1-5+9-13+17-21+…+(-1)n+1(4n-3),则S15+S22-S31的值是( )
| A、-76 | B、76 | C、46 | D、13 |
在等比数列{an}中,有a1a5=4,则a3的值为( )
| A、±2 | B、-2 | C、2 | D、4 |
下列判断正确的是( )
| A、p:“?x0∈R,2x0≤0”则有?p:不存在x0∈R,2x0>0 | ||||
| B、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | ||||
C、?x∈(0,+∞),(
| ||||
| D、设x是实数,则“x>1”是“|x|>1”的充分而不必要条件 |
已知函数f(x)=
,则函数f(x+1)的定义域为( )
| 2-|x| |
| A、[0,2] |
| B、[-1,2] |
| C、[-1,3] |
| D、[-3,1] |