题目内容

已知向量
a
=(1,m+1),向量
b
=(m,2),且
a
b
,若(
a
-
b
)⊥
a

(Ⅰ)求实数m的值;
(Ⅱ) 求向量
a
b
的夹角θ的大小.
考点:数量积判断两个平面向量的垂直关系,数量积表示两个向量的夹角
专题:平面向量及应用
分析:(Ⅰ)由向量垂直时数量积为0,求出m的值;
(Ⅱ)由向量的夹角公式,结合θ的取值范围,求出
a
b
的夹角θ.
解答: 解:(Ⅰ)∵向量
a
=(1,m+1),向量
b
=(m,2),
a
-
b
=(1-m,m-1),
又∵(
a
-
b
)⊥
a

(
a
-
b
)•
a
=0

即(1-m)+(m+1)(m-1)=0;…(4分)
∴m2-m=0,
解得m=0或m=1;…(5分)
又∵
a
b

∴m=0;…(6分)
(Ⅱ)由(Ⅰ)得,
a
=(1,1),
b
=(0,2);
∴cosθ=
a
b
|
a
|×|
b
|
=
2
2
×2
=
2
2

又∵θ∈[0,π],∴θ=
π
4

即向量
a
b
的夹角θ为
π
4
点评:本题考查了平面向量的应用问题,考查了平面向量数量积的应用问题,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网