题目内容
设等边三角形的边长为a,P是△ABC内的任意一点,且P到三边AB、BC、CA的距离分别为d1、d2、d3,则有d1+d2+d3为定值
a,由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内任意一点,即到四个面ABC,ABD,ACD,BCD的距离分别为d1、d2、d3、d4,则有d1+d2+d3+d4为定值( )
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:类比推理
专题:探究型,推理和证明
分析:通过类比,点到直线的距离类比为点到平面的距离,面积类比为体积即可.判断求解h1+h2+h3+h4的定值.
解答:
解:由于等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值
a;
证明如下:如图,△ABC是等边三角形,点P是等边三角形内部任一点.
S△APB=
a•PE,S△CPB=
a•PE,S△APC=
a•PG,
于是S△APB+S△CPB+S△APC=
a•PE+
a•PF+
a•PG,
即
a•PE+
a•PF+
a•PG=S,
∴PE+PF+PG=
为定值.
由线类比为面,点到直线的距离类比为点到平面的距离,面积类比为体积得到:有d1+d2+d3+d4为定值
a.
故选:C.
| ||
| 2 |
证明如下:如图,△ABC是等边三角形,点P是等边三角形内部任一点.
S△APB=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
于是S△APB+S△CPB+S△APC=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
即
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴PE+PF+PG=
| 2S |
| a |
由线类比为面,点到直线的距离类比为点到平面的距离,面积类比为体积得到:有d1+d2+d3+d4为定值
| ||
| 3 |
故选:C.
点评:本题考查类比推理,升维类比是一种比较重要的类比方式,要掌握好其类比规则,对于类比还有一点要注意,那就是类比的结论不一定是正确的.
练习册系列答案
相关题目
已知非零向量
,
满足|
|=1,且
与
-
的夹角为30°,则|
|的取值范围是( )
| a |
| b |
| b |
| b |
| b |
| a |
| a |
A、(0,
| ||
B、[
| ||
| C、[1,+∞) | ||
D、[
|
已知实数a1,a2,a3,a4,a5成等比数列,其中a1=2,a5=8,则a3的值为( )
| A、5 | B、4 | C、-4 | D、±4 |
下列关于向量的等式中,正确的是( )
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、
|
已知集合M=|x|0<x<5,x∈N},N={x|x2=4},下列结论成立的是( )
| A、N⊆M |
| B、M∪N=M |
| C、M∪N=N |
| D、M∩N={2} |
若集合A={x|3x-7≥8-2x},B={x|2≤x<4},则A∩B=( )
| A、{x|x≥3} |
| B、{x|3≤x<4} |
| C、{x|2≤x<4} |
| D、∅ |
已知△ABC的面积为S,且
•
=1,若
<S<
,则∠ABC的范围是( )
| AB |
| BC |
| 1 |
| 2 |
| ||
| 2 |
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、(
|