题目内容
若集合A={x|3x-7≥8-2x},B={x|2≤x<4},则A∩B=( )
| A、{x|x≥3} |
| B、{x|3≤x<4} |
| C、{x|2≤x<4} |
| D、∅ |
考点:交集及其运算
专题:集合
分析:根据集合的基本运算即可得到结论.
解答:
解:A={x|3x-7≥8-2x}={x|5x≥15}={x|x≥3},B={x|2≤x<4},
则A∩B={x|3≤x<4},
故选:B.
则A∩B={x|3≤x<4},
故选:B.
点评:本题主要考查集合的基本运算,求出集合A是解决本题的关键.比较基础.
练习册系列答案
相关题目
正方形ABCD的边长为1,则|
+
|为( )
| AB |
| AD |
| A、1 | ||
B、
| ||
| C、3 | ||
D、2
|
设等边三角形的边长为a,P是△ABC内的任意一点,且P到三边AB、BC、CA的距离分别为d1、d2、d3,则有d1+d2+d3为定值
a,由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内任意一点,即到四个面ABC,ABD,ACD,BCD的距离分别为d1、d2、d3、d4,则有d1+d2+d3+d4为定值( )
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若集合M={1,2,4},N={x|x是8的约数},则M与N的关系是( )
| A、M=N | B、N⊆M |
| C、M⊆N | D、M?N |
类比下列平面内的结论,在空间中仍能成立的是( )
①平行于同一直线的两条直线平行;
②垂直于同一直线的两条直线平行;
③如果一条直线与两条平行线中的一条垂直,则必与另一条垂直;
④如果一条直线与两条平行线中的一条相交,则必与另一条相交.
①平行于同一直线的两条直线平行;
②垂直于同一直线的两条直线平行;
③如果一条直线与两条平行线中的一条垂直,则必与另一条垂直;
④如果一条直线与两条平行线中的一条相交,则必与另一条相交.
| A、①②④ | B、①③ |
| C、②④ | D、①③④ |
设命题p:命题“?x∈R,x2+x+1=0”的否定是“?x∈R,x2+x+1≠0”;命题q:“x>2”是“|x-1|>1”的充分不必要条件,则( )
| A、“p或q”为真 |
| B、“p且q”为真 |
| C、p真q假 |
| D、p,q均为假命题 |
若双曲线
-
=1的一个焦点到一条渐近线的距离为2a,则双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| A、2 | ||
B、
| ||
C、
| ||
D、
|