题目内容

20.计算
(1)$\frac{i+{i}^{2}+{i}^{3}}{1+i}$
(2)[(1+2i)•i100+($\frac{1-i}{1+i}$)]2-($\frac{1+i}{\sqrt{2}}$)2

分析 (1)利用虚数单位i的运算性质结合复数代数形式的乘除运算化简得答案;
(2)利用虚数单位i的运算性质结合复数代数形式的乘除运算化简得答案.

解答 解:(1)$\frac{i+{i}^{2}+{i}^{3}}{1+i}$=$\frac{-1}{1+i}=\frac{-(1-i)}{(1+i)(1-i)}=-\frac{1}{2}+\frac{i}{2}$;
(2)[(1+2i)•i100+($\frac{1-i}{1+i}$)]2-($\frac{1+i}{\sqrt{2}}$)2
=$[(1+2i)•({i}^{4})^{25}+\frac{(1-i)^{2}}{(1+i)(1-i)}]^{2}-\frac{(1+i)^{2}}{2}$
=(1+2i-i)2-i=(1+i)2-i=i.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网