题目内容

顶点在坐标原点,对称轴为坐标轴且经过点(-2,3)的抛物线方程是(  )
A、y2=
9
4
x
B、x2=
4
3
y
C、y2=-
9
4
x或x2=-
4
3
y
D、y2=-
9
2
x或x2=
4
3
y
考点:抛物线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:对称轴分为是x轴和y轴两种情况,分别设出标准方程为y2=-2px和x2=2py,然后将M点坐标代入即可求出抛物线标准方程.
解答: 解:(1)抛物线的顶点在坐标原点,对称轴是x轴,并且经过点 (-2,3),
设它的标准方程为y2=-2px(p>0)
∴9=4p,解得p=
9
4

∴y2=-
9
2
x.
(2)抛物线的顶点在坐标原点,对称轴是y轴,并且经过点 (-2,3),
设它的标准方程为x2=2py(p>0)
∴4=6p,
解得:p=
2
3

∴x2=
4
3
y
∴抛物线方程是y2=-
9
2
x或x2=
4
3
y.
故选:D.
点评:本题考查了抛物线的标准方程,解题过程中要注意对称轴是x轴和y轴两种情况作答,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网