题目内容

4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,B=$\frac{π}{3}$,sinA+$\sqrt{3}$cosA=2,则b=$\sqrt{3}$.

分析 由已知及两角和的正弦函数公式可得:sin(A+$\frac{π}{3}$)=1,结合范围A+$\frac{π}{3}$∈($\frac{π}{3}$,π),可求A=$\frac{π}{6}$,进而利用正弦定理可得b的值.

解答 解:∵sinA+$\sqrt{3}$cosA=2,可得:sin(A+$\frac{π}{3}$)=1,
∵A∈(0,$\frac{2π}{3}$),可得:A+$\frac{π}{3}$∈($\frac{π}{3}$,π),
∴A+$\frac{π}{3}$=$\frac{π}{2}$,解得:A=$\frac{π}{6}$,
又∵a=1,B=$\frac{π}{3}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{1×\frac{\sqrt{3}}{2}}{\frac{1}{2}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题主要考查两角和的正弦函数公式,正弦定理,正弦函数的图象和性质在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网