题目内容

12.若△ABC的内角A,B,C所对的边分别是a、b、c,已知2bsin2A=asinB,且b=2,c=3,则a等于(  )
A.$\sqrt{6}$B.$\sqrt{10}$C.2$\sqrt{2}$D.4

分析 由正弦定理化简已知等式可得:4sinBsinAcosA=sinAsinB,结合sinA≠0,sinB≠0,可求cosA的值,进而利用余弦定理即可计算得解.

解答 解:∵2bsin2A=asinB,
∴由正弦定理可得:4sinBsinAcosA=sinAsinB,
又∵A,B为三角形内角,sinA≠0,sinB≠0,
∴cosA=$\frac{1}{4}$,
∵b=2,c=3,
∴由余弦定理可得:a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{4+9-2×2×3×\frac{1}{4}}$=$\sqrt{10}$.
故选:B.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网