题目内容
点(a,b)在直线2x-y+3=0的右下方,则( )
| A、2a-b+3<0 |
| B、2a-b+3>0 |
| C、2a-b+3=0 |
| D、以上都不成立 |
考点:二元一次不等式的几何意义
专题:不等式的解法及应用
分析:点(0,0)在直线2x-y+3=0的右下方区域,代入直线左侧的代数式后大于0,点(a,b)和(0,0)在直线的同侧,所以点的坐标代入直线左侧的代数式后大于0.
解答:
解:点(a,b)在直线2x-y+3=0的右下方
则2a-b+3>0,
故选B.
则2a-b+3>0,
故选B.
点评:本题考查了二元一次不等式(组)与平面区域,平面中的直线把平面分成三个部分,直线上的点代入方程成立,直线同侧的点代入直线左侧得到的值同号,是基础题.
练习册系列答案
相关题目
在跳水比赛中,七位裁判为一选手打出的分数如下:9.0,8.9,9.0,9.5,9.3,9.4,9.3,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
| A、9.2,0.02 |
| B、9.2,0.028 |
| C、9.3,0.02 |
| D、9.3,0.028 |
已知△ABC中,点D在BC边上,且
=4
=r
+s
,则3r+s=( )
| CD |
| DB |
| AB |
| AC |
A、
| ||
B、
| ||
C、
| ||
D、
|
若关于x,y的方程x2•sinα-y2•cosα=1所表示的焦点在x轴的双曲线,则方程(x+cosα)2+(y+sinα)2=1所表示的圆的圆心在( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
在△ABC中,A,B,C所对的边分别是a,b,c,满足3a2+3b2=c2+4ab,现设f(x)=tanx,则( )
| A、f(sinA)≤f(cosB) |
| B、f(sinA)≥f(cosB) |
| C、f(sinA)≤f(sinB) |
| D、f(cosA)≤f(cosB) |
若向量
,
,
两两所成的角相等,且|
|=|
|=|
|=1,则|
+
+
|=( )
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| c |
| A、0 | ||
| B、3 | ||
| C、3或 0 | ||
D、1或
|
已知A={x|
>1},B={x||x|<a},若∅?B⊆A,则实数a的取值范围是( )
| 4 |
| x+1 |
| A、a<1 | B、a≤1 |
| C、1≤a≤3 | D、0<a≤1 |