题目内容
一个单峰函数y=f(x)的因素x的取值范围是[20,30],用黄金分割法安排试点,x1,x2,x3,x4 …中,若x1<x2,x1,x3依次是好点,则x4= .
考点:黄金分割法—0.618法
专题:选作题,函数的性质及应用
分析:确定区间长度为10,利用0.618法选取试点:x1=20+0.618×(30-20)=26.18,x2=20+30-26.18=23.72,
根据x1处的结果比x2处好,这样可知得到x3,x4.
根据x1处的结果比x2处好,这样可知得到x3,x4.
解答:
解:根据题意,由于一个单峰函数y=f(x)的因素x的取值范围是[20,30],用黄金分割法安排试点,x1,x2,x3,x4,可知由已知试验范围为[20,30],可得区间长度为10,利用0.618法选取试点:x1=20+0.618×(30-20)=26.18,x2=20+30-26.18=23.72,
∵x1处的结果比x2处好,这样可知得到x3=30-0.618×(30-26.18),同理得到x4=21.46,
故答案为:21.46.
∵x1处的结果比x2处好,这样可知得到x3=30-0.618×(30-26.18),同理得到x4=21.46,
故答案为:21.46.
点评:本题考查黄金分割法安排试点,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
已知M (0,-2),N (0,4),则以MN为斜边的直角三角形直角顶点P的轨迹方程是( )
| A、x2+y2=4,(y≠±2) |
| B、x2+y2=9 |
| C、x2+(y-1)2=9,(y≠-2且y≠4) |
| D、x2+(y-1)2=9 |