ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×ãan=£¨
£© bn
£¨1£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÇóÖ¤{an}ÊǵȱÈÊýÁУ»
£¨2£©ÈôÊýÁÐ{an}µÄǰnÏîºÍΪSn=1-£¨
£©n
¢ÙÉè¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬ºãÓÐ
£¾¦Ë£¨1+
£©£¨1+
£©£¨1+
£©¡£¨1+
£©³ÉÁ¢£¬ÊÔÇóʵÊý¦ËµÄȡֵ·¶Î§£®
¢ÚÈôÊýÁÐ{cn}Âú×ãcn=
bn+1£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ±ÈÊýÁУ¿Èç¹û´æÔÚ£¬ÇëÇó³öÕâÈýÏÈç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| 1 |
| 2 |
£¨1£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÇóÖ¤{an}ÊǵȱÈÊýÁУ»
£¨2£©ÈôÊýÁÐ{an}µÄǰnÏîºÍΪSn=1-£¨
| 1 |
| 2 |
¢ÙÉè¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬ºãÓÐ
| 1 |
| an |
| 1 |
| 2b1-1 |
| 1 |
| 2b2-1 |
| 1 |
| 2b3-1 |
| 1 |
| 2bn-1 |
¢ÚÈôÊýÁÐ{cn}Âú×ãcn=
| 2 |
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ
רÌ⣺×ÛºÏÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬É蹫²îΪd£¬Ôòbn+1-bn=d¶Ôn¡ÊN*ºã³ÉÁ¢£¬½áºÏan=(
)bn£¬¼´¿ÉÖ¤Ã÷{an}ÊǵȱÈÊýÁУ»
£¨2£©¢ÙÏÈÈ·¶¨ÊýÁÐ{an}µÄͨÏʽÊÇan=(
)n£¬¿ÉµÃbn=n£¬²»µÈʽ
£¾¦Ë(1+
)(1+
)(1+
)¡(1+
)£¬·ÖÀë²ÎÊý£¬ÀûÓÃÇó×îÖµµÄ·½·¨£¬¼´¿ÉÇóʵÊý¦ËµÄȡֵ·¶Î§£»¢ÚÀûÓ÷´Ö¤·¨¿ÉÒԵóö½áÂÛ£®
| 1 |
| 2 |
£¨2£©¢ÙÏÈÈ·¶¨ÊýÁÐ{an}µÄͨÏʽÊÇan=(
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2b1-1 |
| 1 |
| 2b2-1 |
| 1 |
| 2b3-1 |
| 1 |
| 2bn-1 |
½â´ð£º
£¨1£©Ö¤Ã÷£ºÊýÁÐ{bn}ÊǵȲîÊýÁУ¬É蹫²îΪd£¬Ôòbn+1-bn=d¶Ôn¡ÊN*ºã³ÉÁ¢£¬
ÓÉÓÚan=(
)bn
ËùÒÔ
=(
)bn+1-bn=(
)dÊǶ¨Öµ£¬
´Ó¶øÊýÁÐ{an}ÊǵȱÈÊýÁУ® ¡£¨3·Ö£©
£¨2£©¢Ù½â£ºµ±n=1ʱ£¬a1=
£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=(
)n£¬n=1Ò²ÊʺϴËʽ£¬¼´ÊýÁÐ{an}µÄͨÏʽÊÇan=(
)n£® ¡£¨5·Ö£©
ËùÒÔ£¬bn=n¡£¨6·Ö£©
²»µÈʽ
£¾¦Ë(1+
)(1+
)(1+
)¡(1+
)
¿É»¯Îª¦Ë£¼2n¡Á
¡£¨8·Ö£©
Áîf(n)=2n¡Á
£¨n¡ÊN*£©£¬Ôò¦Ë£¼f£¨n£©min¡£¨9·Ö£©
ÓÖ
=¡=2¡Á
=
£¾1ºã³ÉÁ¢£¬
ËùÒÔ£¬f£¨n£©µ¥µ÷Ôö ¡£¨10·Ö£©
ËùÒÔ£¬f£¨n£©min=f£¨1£©=1£¬
ËùÒÔ£¬ËùÇóʵÊý¦ËµÄȡֵ·¶Î§Îª¦Ë£¼1¡£¨11·Ö£©
¢Úcn=
n+1
¼ÙÉè´æÔÚ²»Í¬µÄÈýÏîcm£¬cn£¬ct³ÉµÈ±ÈÊýÁУ¬
ÓÉÓÚ{cn}Êǵ¥µ÷ÔöÊýÁУ¬²»·ÁÉèm£¼n£¼t£¬Ôòcn2=cmct£¬¡£¨12·Ö£©
¡à(
n+1)2=(
m+1)(
t+1)
»¯¼òµÃ
(m+t-2n)=2n2-2mt£¬¡£¨13·Ö£©
ÓÉÓÚ
ÊÇÎÞÀíÊý£¬m+t-2n£¬2n2-2mt¾ùΪÕûÊý£¬
Òò´Ë
¡£¨14·Ö£©
ÏûÈ¥n£¬µÃm2-2mt+t2=0£¬¼´£¨m-t£©2=0
ËùÒÔ£¬m=t£¬Óëm£¼n£¼tì¶Ü ¡£¨15·Ö£©
¹Ê²»´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ±ÈÊýÁУ¬¡£¨16·Ö£©
ÓÉÓÚan=(
| 1 |
| 2 |
ËùÒÔ
| an+1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
´Ó¶øÊýÁÐ{an}ÊǵȱÈÊýÁУ® ¡£¨3·Ö£©
£¨2£©¢Ù½â£ºµ±n=1ʱ£¬a1=
| 1 |
| 2 |
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=(
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔ£¬bn=n¡£¨6·Ö£©
²»µÈʽ
| 1 |
| an |
| 1 |
| 2b1-1 |
| 1 |
| 2b2-1 |
| 1 |
| 2b3-1 |
| 1 |
| 2bn-1 |
¿É»¯Îª¦Ë£¼2n¡Á
| 1¡Á3¡Á5¡Á¡¡Á(2n-1) |
| 2¡Á4¡Á6¡Á¡¡Á2n |
Áîf(n)=2n¡Á
| 1¡Á3¡Á5¡Á¡¡Á(2n-1) |
| 2¡Á4¡Á6¡Á¡¡Á2n |
ÓÖ
| f(n+1) |
| f(n) |
| 2n+1 |
| 2n+2 |
| 2n+1 |
| n+1 |
ËùÒÔ£¬f£¨n£©µ¥µ÷Ôö ¡£¨10·Ö£©
ËùÒÔ£¬f£¨n£©min=f£¨1£©=1£¬
ËùÒÔ£¬ËùÇóʵÊý¦ËµÄȡֵ·¶Î§Îª¦Ë£¼1¡£¨11·Ö£©
¢Úcn=
| 2 |
¼ÙÉè´æÔÚ²»Í¬µÄÈýÏîcm£¬cn£¬ct³ÉµÈ±ÈÊýÁУ¬
ÓÉÓÚ{cn}Êǵ¥µ÷ÔöÊýÁУ¬²»·ÁÉèm£¼n£¼t£¬Ôòcn2=cmct£¬¡£¨12·Ö£©
¡à(
| 2 |
| 2 |
| 2 |
»¯¼òµÃ
| 2 |
ÓÉÓÚ
| 2 |
Òò´Ë
|
ÏûÈ¥n£¬µÃm2-2mt+t2=0£¬¼´£¨m-t£©2=0
ËùÒÔ£¬m=t£¬Óëm£¼n£¼tì¶Ü ¡£¨15·Ö£©
¹Ê²»´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ±ÈÊýÁУ¬¡£¨16·Ö£©
µãÆÀ£º±¾Ìâ½â¾öµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²éÊýÁеÄͨÏ¿¼²éºã³ÉÁ¢ÎÊÌ⣬ÀûÓú¯ÊýµÄ×îÖµÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
x¡¢y£¾0£¬x+y=1£¬ÇÒ
+
¡Üaºã³ÉÁ¢£¬ÔòaµÄ×îСֵΪ£¨¡¡¡¡£©
| x |
| y |
A¡¢
| ||||
B¡¢2
| ||||
| C¡¢2 | ||||
D¡¢
|
ÒÑÖª½Ç¦ÁÖձ߾¹ýµãP£¨-4a£¬3a£©£¨a£¼0£©£¬Ôò2sin¦Á+cos¦ÁµÄֵΪ£¨¡¡¡¡£©
A¡¢-
| ||||
B¡¢
| ||||
| C¡¢0 | ||||
D¡¢-
|
ijУ¸ß¶þÄê¼¶ÒªÅųöÖÜÁùÉÏÎçµÄÓïÎÄ£¬Êýѧ£¬Ó¢ÓÎïÀí£¬»¯Ñ§£¬ÉúÎï6½Ú¿ÎµÄ¿Î³Ì±í£¬ÒªÇóÊýѧ¿Î²»ÅŵÚÒ»½Ú£¬Ó¢Óï¿Î²»ÅŵÚÁù½Ú£¬²»Í¬ÅÅ·¨ÖÖÊýÊÇ£¨¡¡¡¡£©
| A¡¢600 | B¡¢504 |
| C¡¢480 | D¡¢288 |