题目内容

设a,b为两个互不相等的正数,且a+b=1,求证:
1
a
+
1
b
>4.
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式的性质即可得出.
解答: 证明:∵a,b为两个的正数,且a+b=1,
1
a
+
1
b
=(a+b)(
1
a
+
1
b
)
=2+
b
a
+
a
b
≥2+2
b
a
a
b
=4,当且仅当a=b=
1
2
时取等号.
而a≠b,∴
1
a
+
1
b
>4.
点评:本题考查了“乘1法”和基本不等式的性质,正确理解“一正二定三相等”的使用法则是解题的关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网