题目内容
已知函数f(x)=2cos(x-
),x∈R.
(Ⅰ)求f(-
)的值;
(Ⅱ)若cos(θ+
)=
,θ∈(-
,
),求f(2θ+
).
| π |
| 12 |
(Ⅰ)求f(-
| π |
| 6 |
(Ⅱ)若cos(θ+
| π |
| 3 |
| 3 |
| 5 |
| π |
| 2 |
| π |
| 2 |
| π |
| 12 |
考点:二倍角的余弦,二倍角的正弦
专题:三角函数的求值
分析:(I)根据函数f(x)的解析式,即可求得f(-
)的值.
(II)根据θ∈(-
,
)及cos(θ+
)=
,求得sin(θ+
)=
.再利用二倍角公式求得 cos2(θ+
)和sin2(θ+
)的值.再由 f(2θ+
)=2cos2θ=2cos[2(θ+
)-
],利用两角差的余弦公式计算求得结果.
| π |
| 6 |
(II)根据θ∈(-
| π |
| 2 |
| π |
| 2 |
| π |
| 3 |
| 3 |
| 5 |
| π |
| 3 |
| 4 |
| 5 |
| π |
| 3 |
| π |
| 3 |
| π |
| 12 |
| π |
| 3 |
| 2π |
| 3 |
解答:
解:(I)∵函数f(x)=2cos(x-
),∴f(-
)=2cos(-
-
)=2cos(-
)=cos
=
.
(II)∵θ∈(-
,
),∴-
<θ+
<
.
∵cos(θ+
)=
∈(
,
)∴
<θ+
<
,∴sin(θ+
)=
.
∴cos2(θ+
)=2cos2(θ+
)-1=-
,sin2(θ+
)=2sin(θ+
)cos(θ+
)=
.
∴f(2θ+
)=2cos(2θ+
-
)=2cos2θ=2cos[2(θ+
)-
]=2cos2(θ+
)cos
+2sin2(θ+
)sin
=2×(-
)×(-
)+2
×
=
.
| π |
| 12 |
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |
| π |
| 4 |
| π |
| 4 |
| 2 |
(II)∵θ∈(-
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
∵cos(θ+
| π |
| 3 |
| 3 |
| 5 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 4 |
| 5 |
∴cos2(θ+
| π |
| 3 |
| π |
| 3 |
| 7 |
| 25 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 24 |
| 25 |
∴f(2θ+
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
=2×(-
| 7 |
| 25 |
| 1 |
| 2 |
| 24 |
| 25 |
| ||
| 2 |
7+24
| ||
| 25 |
点评:本题主要考查同角三角函数的基本关系、诱导公式、二倍角公式的应用,属于中档题.
练习册系列答案
相关题目