题目内容
7.已知a>0且a≠1,函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$满足f(0)=2,f(-1)=3,则f(f(-3))=( )| A. | -3 | B. | -2 | C. | 3 | D. | 2 |
分析 f(0)=2,f(-1)=3,列方程组,解得a=$\frac{1}{2},b=1$,从而f(-3)=a-3+b=$(\frac{1}{2})^{-3}+1=9$,进而f(f(-3))=f(9),由此能求出结果.
解答 解:∵a>0且a≠1,函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$满足f(0)=2,f(-1)=3,
∴$\left\{\begin{array}{l}{f(0)={a}^{0}+b=2}\\{f(-1)={a}^{-1}+b=3}\end{array}\right.$,解得a=$\frac{1}{2},b=1$,
∴f(-3)=a-3+b=$(\frac{1}{2})^{-3}+1=9$,
f(f(-3))=f(9)=$log\frac{1}{3}9$=-2.
故选:B.
点评 本题考查函数值的求法,是基础题,解题时要 认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
17.如果-1<a<b<0,则下列不等式正确的是( )
| A. | $\frac{1}{b}<\frac{1}{a}<{b^2}<{a^2}$ | B. | $\frac{1}{b}<\frac{1}{a}<{a^2}<{b^2}$ | C. | $\frac{1}{a}<\frac{1}{b}<{b^2}<{a^2}$ | D. | $\frac{1}{a}<\frac{1}{b}<{a^2}<{b^2}$ |
18.在复平面内,复数$\frac{2}{1+i}$对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
19.对于任意的非零实数m,直线y=2x+m与双曲线$\frac{x^2}{a^2}-\frac{{{y^2}_{\;}}}{b^2}=1({a>0,b>0})$有且只有一个交点,则双曲线的离心率为( )
| A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | 2 | D. | $\sqrt{2}$ |
16.如果a<b<0,则下列不等式成立的是( )
| A. | $\frac{1}{a}<\frac{1}{b}$ | B. | ac2<bc2 | C. | a2<b2 | D. | a3<b3 |