题目内容
某几何体的三视图如图所示,则该几何体的体积是( )

A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知的三视图可得:该几何体是一个以主视图为底面的四棱锥,分别求出棱锥的底面面积和高,代入棱锥体积公式,可得答案.
解答:
解:由已知的三视图可得:该几何体是一个以主视图为底面的四棱锥,
其底面面积S=2×2=4,
高h=2×
=
,
故该几何体的体积V=
Sh=
×4×
=
,
故选:D
其底面面积S=2×2=4,
高h=2×
| ||
| 2 |
| 3 |
故该几何体的体积V=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
4
| ||
| 3 |
故选:D
点评:根据三视图判断空间几何体的形状,进而求几何的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.
练习册系列答案
相关题目
若实数x,y满足不等式组
,则z=|x|+2y的最大值是( )
|
| A、10 | B、11 | C、13 | D、14 |
已知数列{an}的前n项和Sn=
(n=1,2,3,…)
(1)求a1的值;
(2)求证:(n-2)an+1=(n-1)an-1(n≥2);
(3)判断数列{an}是否为等差数列,并说明理由.
| n(1+an) |
| 2 |
(1)求a1的值;
(2)求证:(n-2)an+1=(n-1)an-1(n≥2);
(3)判断数列{an}是否为等差数列,并说明理由.
已知函数f(x+1)=x2+2x-5,则f(x)的解析式为( )
| A、f(x)=x2 |
| B、f(x)=x2-6 |
| C、f(x)=x2+6 |
| D、f(x)=x2+6x |