题目内容

某几何体的三视图如图所示,则该几何体的体积是(  )
A、
3
B、
3
3
C、
2
3
3
D、
4
3
3
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知的三视图可得:该几何体是一个以主视图为底面的四棱锥,分别求出棱锥的底面面积和高,代入棱锥体积公式,可得答案.
解答: 解:由已知的三视图可得:该几何体是一个以主视图为底面的四棱锥,
其底面面积S=2×2=4,
高h=2×
3
2
=
3

故该几何体的体积V=
1
3
Sh=
1
3
×4×
3
=
4
3
3

故选:D
点评:根据三视图判断空间几何体的形状,进而求几何的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网