题目内容
14.若$cos(α-\frac{π}{3})=\frac{2}{3}$,α是锐角,则sinα=( )| A. | $\frac{{\sqrt{15}}}{6}$ | B. | $\frac{{\sqrt{5}-\sqrt{3}}}{6}$ | C. | $\frac{{2\sqrt{3}-\sqrt{5}}}{6}$ | D. | $\frac{{4-\sqrt{15}}}{6}$ |
分析 根据同角的三角形函数关系以及两角和的正弦公式计算即可.
解答 解:∵α是锐角,
∴-$\frac{π}{3}$<α-$\frac{π}{3}$<$\frac{π}{6}$,
∵$cos(α-\frac{π}{3})=\frac{2}{3}$,
∴sin(α-$\frac{π}{3}$)=-$\frac{\sqrt{5}}{3}$,
∴sinα=(α-$\frac{π}{3}$+$\frac{π}{3}$)=sin(α-$\frac{π}{3}$)cos$\frac{π}{3}$+cos(α-$\frac{π}{3}$)sin$\frac{π}{3}$=-$\frac{\sqrt{5}}{3}$×$\frac{1}{2}$+$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{3}-\sqrt{5}}{6}$
故选:C
点评 本题考查了同角的三角形函数关系以及两角和的正弦公式,属于基础题.
练习册系列答案
相关题目
4.
已知函数f(x)=ax3+bx2+c,其导函数f'(x)的图象如图,则函数f(x)的极小值为( )
| A. | c | B. | a+b+c | C. | 8a+4b+c | D. | 3a+2b |
19.某班5名学生的数学和物理成绩如下表:
(1)求物理成绩y对数学成绩x的回归直线方程;
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| A | B | C | D | E | |
| 数学成绩(x) | 88 | 76 | 73 | 66 | 63 |
| 物理成绩(y) | 78 | 65 | 71 | 64 | 61 |
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
3.已知抛物线y2=2px(p>0)的焦点为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且其准线被该双曲线截得的弦长是$\frac{2}{3}$b,则该双曲线的离心率为( )
| A. | $\frac{13}{9}$ | B. | $\frac{10}{9}$ | C. | $\frac{\sqrt{13}}{3}$ | D. | $\frac{\sqrt{10}}{3}$ |