ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏßy2=8xµÄ½¹µãΪÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄÓÒ½¹µã£¬ÇÒÍÖÔ²µÄ³¤Ö᳤Ϊ4
£¬×óÓÒ¶¥µã·Ö±ðΪA£¬B£¬¾¹ýÍÖÔ²×ó½¹µãµÄÖ±ÏßlÓëÍÖÔ²½»ÓÚC¡¢DÁ½µã£®
£¨1£©ÇóÍÖÔ²±ê×¼·½³Ì£º
£¨2£©¼Ç¡÷ABDÓë¡÷ABCµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬ÇÒ|S1-S2|=4£¬ÇóÖ±Ïßl·½³Ì£»
£¨3£©ÍÖÔ²µÄÉ϶¥µãG×÷Ö±Ïßm¡¢n£¬Ê¹m¡Ín£¬Ö±Ïßm¡¢n·Ö±ð½»ÍÖÔ²ÓÚµãP¡¢Q£®ÎÊ£ºPQÊÇ·ñ¹ýÒ»¶¨µã£¬ÈôÊÇÇó³ö¸ÃµãµÄ×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
£¨1£©ÇóÍÖÔ²±ê×¼·½³Ì£º
£¨2£©¼Ç¡÷ABDÓë¡÷ABCµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬ÇÒ|S1-S2|=4£¬ÇóÖ±Ïßl·½³Ì£»
£¨3£©ÍÖÔ²µÄÉ϶¥µãG×÷Ö±Ïßm¡¢n£¬Ê¹m¡Ín£¬Ö±Ïßm¡¢n·Ö±ð½»ÍÖÔ²ÓÚµãP¡¢Q£®ÎÊ£ºPQÊÇ·ñ¹ýÒ»¶¨µã£¬ÈôÊÇÇó³ö¸ÃµãµÄ×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÅ×ÎïÏߵļòµ¥ÐÔÖÊ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÀûÓÃÅ×ÎïÏßy2=8x£¬¿ÉµÃ½¹µã×ø±ê£¬´Ó¶øÍÖÔ²ÖеÄc=2£¬ÓÖÍÖÔ²µÄa=2
£¬¼´¿ÉÇóÍÖÔ²±ê×¼·½³Ì£º
£¨2£©ÉèÖ±Ïßl£ºx=my-2£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ|S1-S2|=2£¬¼´¿ÉÇóÖ±Ïßl·½³Ì£»
£¨3£©ÉèÖ±Ïßm£ºy=kx+2£¬´úÈëÍÖÔ²·½³Ì£¬Çó³öPµÄ×ø±ê£¬Í¬Àí¿ÉµÃQµÄ×ø±ê£¬Çó³öÖ±ÏßPQµÄ·½³Ì£¬¼´¿ÉµÃ³ö½áÂÛ£®
| 2 |
£¨2£©ÉèÖ±Ïßl£ºx=my-2£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ|S1-S2|=2£¬¼´¿ÉÇóÖ±Ïßl·½³Ì£»
£¨3£©ÉèÖ±Ïßm£ºy=kx+2£¬´úÈëÍÖÔ²·½³Ì£¬Çó³öPµÄ×ø±ê£¬Í¬Àí¿ÉµÃQµÄ×ø±ê£¬Çó³öÖ±ÏßPQµÄ·½³Ì£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º
½â£º£¨1£©ÓÉÌâÉè¿ÉÖªÅ×ÎïÏßy2=8xµÄ½¹µã×ø±êΪ£¨2£¬0£©
¹ÊÍÖÔ²ÖеÄc=2£¬ÓÖÍÖÔ²µÄa=2
£¬
ËùÒÔb2=a2-c2=4
¹ÊÍÖÔ²±ê×¼·½³ÌΪ£º
+
=1¡£¨4·Ö£©
£¨2£©ÓÉÌâÒâ¿ÉÉèÖ±Ïßl£ºx=my-2£¬´úÈëÍÖÔ²·½³ÌµÃ£¨m2+2£©y2-4my-4=0
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬A£¨-2
£¬0£©£¬B£¨2
£¬0£©
Ôòy1+y2=
£¬¡£¨6·Ö£©
ÓÚÊÇ|S1-S2|=
¡Á4
¡Á|y1+y2|=2
|
|=4
½âµÃm=¡À
£¬¹ÊÖ±ÏßlµÄ·½³ÌΪx¡À
y+2=0£® ¡£¨8·Ö£©
£¨3£©Ò×ÖªG£¨0£¬2£©£¬Ö±Ïßm¡¢nµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïßm£ºy=kx+2£¬´úÈëÍÖÔ²·½³ÌµÃx2+2£¨kx+2£©2=8£¬¼´£¨2k2+1£©x2+8kx=0£¬
½âµÃP(-
£¬
)£®
ͬÀí£¬Ö±ÏßnµÄ·½³ÌΪy=-
x+2£¬Q(
£¬
)£®¡£¨10·Ö£©
¹ÊÖ±ÏßPQµÄ·½³ÌΪy-
=
(x+
)£¬¡£¨12·Ö£©
¼´y=
x-
ËùÒÔ£¬Ö±ÏßPQ¾¹ý¶¨µã(0 £¬ -
)£® ¡£¨14·Ö£©
¹ÊÍÖÔ²ÖеÄc=2£¬ÓÖÍÖÔ²µÄa=2
| 2 |
ËùÒÔb2=a2-c2=4
¹ÊÍÖÔ²±ê×¼·½³ÌΪ£º
| x2 |
| 8 |
| y2 |
| 4 |
£¨2£©ÓÉÌâÒâ¿ÉÉèÖ±Ïßl£ºx=my-2£¬´úÈëÍÖÔ²·½³ÌµÃ£¨m2+2£©y2-4my-4=0
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬A£¨-2
| 2 |
| 2 |
Ôòy1+y2=
| 4m |
| m2+2 |
ÓÚÊÇ|S1-S2|=
| 1 |
| 2 |
| 2 |
| 2 |
| 4m |
| m2+2 |
½âµÃm=¡À
| 2 |
| 2 |
£¨3£©Ò×ÖªG£¨0£¬2£©£¬Ö±Ïßm¡¢nµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïßm£ºy=kx+2£¬´úÈëÍÖÔ²·½³ÌµÃx2+2£¨kx+2£©2=8£¬¼´£¨2k2+1£©x2+8kx=0£¬
½âµÃP(-
| 8k |
| 1+2k2 |
| 2-4k2 |
| 1+2k2 |
ͬÀí£¬Ö±ÏßnµÄ·½³ÌΪy=-
| 1 |
| k |
| 8k |
| k2+2 |
| 2k2-4 |
| k2+2 |
¹ÊÖ±ÏßPQµÄ·½³ÌΪy-
| 2-4k2 |
| 1+2k2 |
| k2-1 |
| 3k |
| 8k |
| 1+2k2 |
¼´y=
| k2-1 |
| 3k |
| 2 |
| 3 |
ËùÒÔ£¬Ö±ÏßPQ¾¹ý¶¨µã(0 £¬ -
| 2 |
| 3 |
µãÆÀ£º±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌÓëÐÔÖÊ£¬¿¼²éÍÖÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶÈÖеȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèË«ÇúÏßC£º
-
=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊe=
£¬Ôò¸ÃË«ÇúÏߵĽ¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
| x2 |
| a2 |
| y2 |
| b2 |
| 5 |
| 4 |
| A¡¢4x¡À3y=0 |
| B¡¢3x¡À4y=0 |
| C¡¢5x¡À3y=0 |
| D¡¢3x¡À5y=0 |