ÌâÄ¿ÄÚÈÝ

ÒÑÖªÅ×ÎïÏßy2=8xµÄ½¹µãΪÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µã£¬ÇÒÍÖÔ²µÄ³¤Ö᳤Ϊ4
2
£¬×óÓÒ¶¥µã·Ö±ðΪA£¬B£¬¾­¹ýÍÖÔ²×ó½¹µãµÄÖ±ÏßlÓëÍÖÔ²½»ÓÚC¡¢DÁ½µã£®
£¨1£©ÇóÍÖÔ²±ê×¼·½³Ì£º
£¨2£©¼Ç¡÷ABDÓë¡÷ABCµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬ÇÒ|S1-S2|=4£¬ÇóÖ±Ïßl·½³Ì£»
£¨3£©ÍÖÔ²µÄÉ϶¥µãG×÷Ö±Ïßm¡¢n£¬Ê¹m¡Ín£¬Ö±Ïßm¡¢n·Ö±ð½»ÍÖÔ²ÓÚµãP¡¢Q£®ÎÊ£ºPQÊÇ·ñ¹ýÒ»¶¨µã£¬ÈôÊÇÇó³ö¸ÃµãµÄ×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÅ×ÎïÏߵļòµ¥ÐÔÖÊ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÀûÓÃÅ×ÎïÏßy2=8x£¬¿ÉµÃ½¹µã×ø±ê£¬´Ó¶øÍÖÔ²ÖеÄc=2£¬ÓÖÍÖÔ²µÄa=2
2
£¬¼´¿ÉÇóÍÖÔ²±ê×¼·½³Ì£º
£¨2£©ÉèÖ±Ïßl£ºx=my-2£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ|S1-S2|=2£¬¼´¿ÉÇóÖ±Ïßl·½³Ì£»
£¨3£©ÉèÖ±Ïßm£ºy=kx+2£¬´úÈëÍÖÔ²·½³Ì£¬Çó³öPµÄ×ø±ê£¬Í¬Àí¿ÉµÃQµÄ×ø±ê£¬Çó³öÖ±ÏßPQµÄ·½³Ì£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÉè¿ÉÖªÅ×ÎïÏßy2=8xµÄ½¹µã×ø±êΪ£¨2£¬0£©
¹ÊÍÖÔ²ÖеÄc=2£¬ÓÖÍÖÔ²µÄa=2
2
£¬
ËùÒÔb2=a2-c2=4
¹ÊÍÖÔ²±ê×¼·½³ÌΪ£º
x2
8
+
y2
4
=1
¡­£¨4·Ö£©
£¨2£©ÓÉÌâÒâ¿ÉÉèÖ±Ïßl£ºx=my-2£¬´úÈëÍÖÔ²·½³ÌµÃ£¨m2+2£©y2-4my-4=0
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬A£¨-2
2
£¬0£©£¬B£¨2
2
£¬0£©
Ôòy1+y2=
4m
m2+2
£¬¡­£¨6·Ö£©
ÓÚÊÇ|S1-S2|=
1
2
¡Á4
2
¡Á|y1+y2|=2
2
|
4m
m2+2
|=4

½âµÃm=¡À
2
£¬¹ÊÖ±ÏßlµÄ·½³ÌΪx¡À
2
y+2=0
£®            ¡­£¨8·Ö£©
£¨3£©Ò×ÖªG£¨0£¬2£©£¬Ö±Ïßm¡¢nµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïßm£ºy=kx+2£¬´úÈëÍÖÔ²·½³ÌµÃx2+2£¨kx+2£©2=8£¬¼´£¨2k2+1£©x2+8kx=0£¬
½âµÃP(-
8k
1+2k2
 £¬ 
2-4k2
1+2k2
)
£®
ͬÀí£¬Ö±ÏßnµÄ·½³ÌΪy=-
1
k
x+2
£¬Q(
8k
k2+2
 £¬ 
2k2-4
k2+2
)
£®¡­£¨10·Ö£©
¹ÊÖ±ÏßPQµÄ·½³ÌΪy-
2-4k2
1+2k2
=
k2-1
3k
(x+
8k
1+2k2
)
£¬¡­£¨12·Ö£©
¼´y=
k2-1
3k
x-
2
3

ËùÒÔ£¬Ö±ÏßPQ¾­¹ý¶¨µã(0 £¬ -
2
3
)
£®  ¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌÓëÐÔÖÊ£¬¿¼²éÍÖÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶÈÖеȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø