题目内容
数列{an}满足:an+1-an=2,a1=1,等比数列{bn}满足:b1=a1,b4=a14.
(1)求an,bn;
(2)设Cn=anbn,求{cn}的前n项和Tn.
(1)求an,bn;
(2)设Cn=anbn,求{cn}的前n项和Tn.
考点:数列的求和,等差数列的通项公式,等比数列的通项公式
专题:等差数列与等比数列
分析:(1)利用等差数列通项公式an=2n-1,由此求出等比数列公比q=3,由此能求出bn=3n-1.
(2)由Cn=anbn=(2n-1)•3n-1,利用错位相减法,能求出{cn}的前n项和Tn.
(2)由Cn=anbn=(2n-1)•3n-1,利用错位相减法,能求出{cn}的前n项和Tn.
解答:
解:(1)∵数列{an}满足:an+1-an=2,a1=1,
∴数列{an}是首项为1,公差为2的等差数列,
∴an=2n-1,
∵等比数列{bn}满足:b1=a1=1,b4=a14=2×14-1=27,
∴1×q3=27,解得q=3,
∴bn=3n-1.
(2)Cn=anbn=(2n-1)•3n-1,
∴Tn=1•30+3•3+5•32+…+(2n-1)•3n-1,①
3Tn=1•3+3•32+5•33+…+(2n-1)•3n,②
①-②,得:-2Tn=1+2(3+32+33+…+3n-1)-(2n-1)•3n
=1+2•
-(2n-1)•3n
=-2-(2n-2)•3n,
∴Tn=1+(n-1)•3n.
∴数列{an}是首项为1,公差为2的等差数列,
∴an=2n-1,
∵等比数列{bn}满足:b1=a1=1,b4=a14=2×14-1=27,
∴1×q3=27,解得q=3,
∴bn=3n-1.
(2)Cn=anbn=(2n-1)•3n-1,
∴Tn=1•30+3•3+5•32+…+(2n-1)•3n-1,①
3Tn=1•3+3•32+5•33+…+(2n-1)•3n,②
①-②,得:-2Tn=1+2(3+32+33+…+3n-1)-(2n-1)•3n
=1+2•
| 3(1-3n-1) |
| 1-3 |
=-2-(2n-2)•3n,
∴Tn=1+(n-1)•3n.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目