题目内容

2.若变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ 4x-y+1≥0\end{array}\right.$,则目标函数z=y-2x的最大值是(  )
A.$\frac{3}{2}$B.2C.3D.$\frac{5}{2}$

分析 画出满足条件的可行域,求出各个角点的坐标,代和目标函数比较大小后,可得目标函数z=y-2x的最大值.

解答 解:满足约束条件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ 4x-y+1≥0\end{array}\right.$的可行域如下图所示:

由$\left\{\begin{array}{l}2x+y-4=0\\ 4x-y+1=0\end{array}\right.$得:$\left\{\begin{array}{l}x=\frac{1}{2}\\ y=3\end{array}\right.$,
当x=0,y=1时,目标函数z=y-2x=1;
当x=2,y=0时,目标函数z=y-2x=-4;
当x=$\frac{1}{2}$,y=3时,目标函数z=y-2x=2;
故目标函数z=y-2x的最大值是2,
故选:B

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网