题目内容

17.已知数列{an}的前n和为Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,则a5+S4=(  )
A.39B.45C.50D.55

分析 推导出{$\sqrt{{a}_{n}+1}$}是首项为1,公差为1的等差数列,从而${a}_{n}={n}^{2}-1$,由此能求出a5+S4的值.

解答 解:∵数列{an}的前n和为Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,
∴$\sqrt{{a}_{n+1}+1}-\sqrt{{a}_{n}+1}$=1,$\sqrt{{a}_{1}+1}=0$,
∴{$\sqrt{{a}_{n}+1}$}是首项为1,公差为1的等差数列,
∴$\sqrt{{a}_{n}+1}$=1+(n-1)×1=n,
∴${a}_{n}={n}^{2}-1$,
∴${a}_{5}={5}^{2}-1$=24,
${S}_{4}={1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}-4$=26.
∴a5+S4=24+26=50.
故选:C.

点评 本题考查数列的前5项和的求法,是基础题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网