ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄÉ϶¥µãΪB2£¬ÓÒ½¹µãΪF2£¬¡÷B2OF2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¨OÎª×ø±êԵ㣩£¬Å×ÎïÏßy2=4
xµÄ½¹µãÇ¡ºÃÊǸÃÍÖÔ²µÄÓÒ¶¥µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãB1£¬B2·Ö±ðÊÇÍÖÔ²µÄ϶¥µãºÍÉ϶¥µã£¬µãPÊÇÍÖÔ²ÉÏÒìÓëB1£¬B2µÄµã£¬ÇóÖ¤£ºÖ±ÏßPB1ºÍÖ±ÏßPB2µÄбÂÊÖ®»ýΪ¶¨Öµ£®
£¨3£©ÒÑÖªÔ²M£ºx2+y2=
µÄÇÐÏßlÓëÍÖÔ²ÏཻÓÚC£¬DÁ½µã£¬ÄÇôÒÔCDΪֱ¾¶µÄÔ²ÊÇ·ñ¾¹ý¶¨µã£¿Èç¹ûÊÇ£¬Çó³ö¶¨µãµÄ×ø±ê£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãB1£¬B2·Ö±ðÊÇÍÖÔ²µÄ϶¥µãºÍÉ϶¥µã£¬µãPÊÇÍÖÔ²ÉÏÒìÓëB1£¬B2µÄµã£¬ÇóÖ¤£ºÖ±ÏßPB1ºÍÖ±ÏßPB2µÄбÂÊÖ®»ýΪ¶¨Öµ£®
£¨3£©ÒÑÖªÔ²M£ºx2+y2=
| 2 |
| 3 |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÒÑÖªb=c£¬a=
£¬Ôòb=c=1£¬¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèP£¨m£¬n£©£¬Ôò
+n2=1£¬Çó³öÖ±ÏßPB1ºÍÖ±ÏßPB2µÄбÂÊ£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨3£©ÏÈÇóµÃÖ±ÏßlµÄбÂʲ»´æÔÚ¼°Ð±ÂÊΪ0ʱԲµÄ·½³Ì£¬Óɴ˿ɵÃÁ½Ô²Ëù¹ý¹«¹²µãΪԵãO£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬´úÈëÍÖÔ²·½³ÌÏûµôyµÃxµÄ¶þ´Î·½³Ì£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨Àí¡¢ÏòÁ¿ÊýÁ¿»ý¿ÉµÃ
•
µÄ±í´ïʽ£¬ÔÙ¸ù¾ÝÏßÔ²ÏàÇпɵÃk£¬mµÄ¹ØÏµÊ½£¬´úÈëÉÏÊö±í´ïʽ¿ÉÇóµÃ
•
=0£¬Óɴ˿ɵýáÂÛ£»
| 2 |
£¨2£©ÉèP£¨m£¬n£©£¬Ôò
| m2 |
| 2 |
£¨3£©ÏÈÇóµÃÖ±ÏßlµÄбÂʲ»´æÔÚ¼°Ð±ÂÊΪ0ʱԲµÄ·½³Ì£¬Óɴ˿ɵÃÁ½Ô²Ëù¹ý¹«¹²µãΪԵãO£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬´úÈëÍÖÔ²·½³ÌÏûµôyµÃxµÄ¶þ´Î·½³Ì£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨Àí¡¢ÏòÁ¿ÊýÁ¿»ý¿ÉµÃ
| OA |
| OB |
| OA |
| OB |
½â´ð£º
½â£º£¨1£©ÒÑÖªb=c£¬a=
£¬
Ôòb=c=1£¬
ÔòËùÇó·½³ÌΪ£º
+y2=1£»
£¨2£©ÓÉÒÑÖªB1£¨0£¬-1£©£¬B2£¨0£¬1£©£¬
ÉèP£¨m£¬n£©£¬Ôò
+n2=1£¬
¡àkPB1•kPB2=
•
=
=-
£»
£¨3£©£¨i£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬¹ÊÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪx=
£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
£¬
£©£¬B£¨
£¬-
£©£¬
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-
£©2+y2=
£®
£¨ii£©µ±Ö±ÏßlµÄбÂÊΪÁãʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬ËùÒÔÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪy=-
£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
£¬-
£©£¬B£¨-
£¬-
£©£¬
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪx2+£¨y+
£©2+y2=
£®
ÏÔÈ»ÒÔÉÏÁ½Ô²¶¼¾¹ýµãO£¨0£¬0£©£®
£¨iii£©µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£®
´úÈëÍÖÔ²·½³ÌÏûÈ¥y£¬µÃ£¨2k2+1£©x2+4kmx+2m2-2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
£¬x1x2=
£®
ËùÒÔy1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2=
£®
ËùÒÔ
•
=x1x2+y1y2=
¢Ù£¬
ÒòΪֱÏßlºÍÔ²MÏàÇУ¬
ËùÒÔÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=
=
£¬ÕûÀí£¬µÃm2=
£¨1+k2£©£¬¢Ú
½«¢Ú´úÈë¢Ù£¬µÃ
•
=£¬ÏÔÈ»ÒÔABΪֱ¾¶µÄÔ²¾¹ý¶¨µãO£¨0£¬0£©£¬
×ÛÉÏ¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²¹ý¶¨µã£¨0£¬0£©£®
| 2 |
Ôòb=c=1£¬
ÔòËùÇó·½³ÌΪ£º
| x2 |
| 2 |
£¨2£©ÓÉÒÑÖªB1£¨0£¬-1£©£¬B2£¨0£¬1£©£¬
ÉèP£¨m£¬n£©£¬Ôò
| m2 |
| 2 |
¡àkPB1•kPB2=
| n+1 |
| m |
| n-1 |
| m |
| n2-1 |
| m2 |
| 1 |
| 2 |
£¨3£©£¨i£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬¹ÊÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪx=
| ||
| 3 |
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-
| ||
| 3 |
| 2 |
| 3 |
£¨ii£©µ±Ö±ÏßlµÄбÂÊΪÁãʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬ËùÒÔÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪy=-
| ||
| 3 |
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪx2+£¨y+
| ||
| 3 |
| 2 |
| 3 |
ÏÔÈ»ÒÔÉÏÁ½Ô²¶¼¾¹ýµãO£¨0£¬0£©£®
£¨iii£©µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£®
´úÈëÍÖÔ²·½³ÌÏûÈ¥y£¬µÃ£¨2k2+1£©x2+4kmx+2m2-2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
| -4km |
| 2k2+1 |
| 2m2-2 |
| 2k2+1 |
ËùÒÔy1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2=
| m2-2k2 |
| 2k2+1 |
ËùÒÔ
| OA |
| OB |
| 3m2-2k2-2 |
| 2k2+1 |
ÒòΪֱÏßlºÍÔ²MÏàÇУ¬
ËùÒÔÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=
| |m| | ||
|
| ||
| 3 |
| 2 |
| 3 |
½«¢Ú´úÈë¢Ù£¬µÃ
| OA |
| OB |
×ÛÉÏ¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²¹ý¶¨µã£¨0£¬0£©£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ·½³Ì¡¢Ô²µÄ·½³Ì¼°Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²éѧÉú½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¶ÔÓÚ¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬ÒÔÏÂËĸöÃüÌâÖдíÎóµÄÊÇ £¨¡¡¡¡£©
| A¡¢Èôf£¨x£©ÊÇÆæº¯Êý£¬Ôòf£¨x-2£©µÄͼÏó¹ØÓÚµãA£¨2£¬0£©¶Ô³Æ |
| B¡¢Èôº¯Êýf£¨x-2£©µÄͼÏó¹ØÓÚÖ±Ïßx=2¶Ô³Æ£¬Ôòf£¨x£©ÎªÅ¼º¯Êý |
| C¡¢Èô¶Ôx¡ÊR£¬ÓÐf£¨x-2£©=-f£¨x£©£¬Ôò4ÊÇf£¨x£©µÄÖÜÆÚ |
| D¡¢º¯Êýy=f£¨x-2£©Óëy=f£¨2-x£©µÄͼÏó¹ØÓÚÖ±Ïßx=0¶Ô³Æ |