题目内容

已知函数f(x)=2sin(x+
π
3
)cosx.
(1)求f(x)的值域;
(2)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)f(x)解析式第一项利用两角和与差的正弦函数公式化简,再利用二倍角的正弦、余弦函数公式变形,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域即可确定出f(x)的值域;
(2)由f(A)=
3
2
以及第一问确定出的f(x)解析式,求出A的度数,再由b与c的值,利用余弦定理求出a的值,根据正弦定理求出sinB的值,进而确定出cosB的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.
解答: 解:(1)∵f(x)=(sinx+
3
cosx)cosx
=sinxcosx+
3
cos2x
=
1
2
sin2x+
3
2
cos2x+
3
2

=sin(2x+
π
3
)+
3
2

∵-1≤sin(2x+
π
3
)≤1,
∴函数f(x)的值域是[
3
-2
2
3
+2
2
];
(2)由f(A)=sin(2A+
π
3
)+
3
2
=
3
2
,得sin(2A+
π
3
)=0,
又A为锐角,∴A=
π
3

又b=2,c=3,
∴由余弦定理得:a2=b2+c2-2bccosA=4+9-2×2×3×
1
2
=7,即a=
7

由正弦定理
a
sinA
=
b
sinB
,得sinB=
bsinA
a
=
3
2
7
=
3
7

又b<a,∴B<A,
∴cosB=
1-sin2B
=
2
7

则cos(A-B)=cosAcosB+sinAsinB=
1
2
×
2
7
+
3
2
×
3
7
=
5
7
14
点评:此题考查了正弦、余弦定理,两角和与差的正弦、余弦函数公式,以及正弦函数的值域,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网