题目内容

5.如图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2016}{a}_{2017}}$=(  )
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2016}$D.$\frac{2016}{2015}$

分析 根据题意,可得a2=3=3×(2-1),a3=6=3×(3-1),a4=9=3×(4-1),a5=12=3×(5-1)…an=3(n-1),数列{an}是首项为3,公差为3的等差数列,通项为an=3(n-1)(n≥2);所以$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{3(n-1)•3n}$=$\frac{1}{9}$($\frac{1}{n-1}$-$\frac{1}{n}$),再由数列的求和方法:裂项相消求和,即可得到所求和.

解答 解:根据分析,可得
a2=3=3×(2-1),a3=6=3×(3-1),a4=9=3×(4-1),
a5=12=3×(5-1)…,an=3(n-1),
数列{an}是首项为3,公差为3的等差数列,通项为an=3(n-1)(n≥2);
所以$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{3(n-1)•3n}$=$\frac{1}{9}$($\frac{1}{n-1}$-$\frac{1}{n}$),
则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2016}{a}_{2017}}$=9×$\frac{1}{9}$×(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$)
=1-$\frac{1}{2016}$=$\frac{2015}{2016}$.
故选:C.

点评 本题主要考查了图形的变化规律,数列的求和方法:裂项相消求和,解答此题的关键是根据已知的图形中点数的变化推得an=3(n-1)(n≥2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网