搜索
已知二次函数y=
-
x
2
+
b
3
x+c
与x轴交于M(x
1
,0),N(x
2
,0)两点,与y轴交于点H.
(1)若∠HMO=45°,∠MHN=105°时,求该二次函数的解析式;
(2)若|x
1
|,|x
2
|分别是一个直角三角形两锐角的正弦值,当点Q(b,c)在直线y=
1
9
x+
1
3
上时,求该二次函数的解析式.
如图,已知菱形ABCD的边长为2,∠ADC=60°,等边三角形△AEF两边分别交边DC,CB于点E,F.
(1)求证:△ADE≌△ACF;
(2)如图2所示,若点E,F始终分别在边DC,CB上移动,记等边△AEF面积为S,则S是否存在最小值?若存在,值为多少;若不存在,请说明理由;
(3)若S存在最小值,对角线AC上是否存在点P,使△PDE的周长最小?若存在,请求出这个最小值;若不存在,请说明理由.
已知:直角梯形ABCD中,DC⊥BC,AD∥BC,AD=AB=5,BC=8.动点P以1个单位/秒的速度从C开始,沿C-D-A方向运动,到达点A时停止.
(1)设△BCP的面积为y,运动的时间为t秒.求y关于t的函数关系式,并写出t的范围;
(2)连接AP,当点P在CD上时,求在第几秒时,△ABP的面积与△BCP的面积相等?
(3)若在点P从点C出发的同时,另一动点M从A开始沿着A-D-C方向运动,运动速度为2个单位/秒.求当P、M相遇时,△BCP的面积?
如图,在四边形ABCD中,AB=BC=1,∠ABC=90°,且AB∥CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:
(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.
(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?
(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.
解方程:
2(x+1
)
2
x
2
-
x+1
x
-1=0.
二次函数y=2(x+1)
2
-4的最小值是
.
如图,AD、BE分别是△ABC的高和角平分线,AD、BE相交于点F,∠BAC=70°,∠C=60°,则∠BFD的度数是( )
A、25°
B、35°
C、65°
D、75°
如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的有
.
①∠E=∠B;②ED=BC;③AB=EF;④AF=CD.
如图,△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(6,4)以原点为位似中心,将△ABC缩小,位似比为1:2,则线段AC中点P变换后对应点的坐标为
.
阅读材料:
已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
∵S=S
△OBC
+S
△OAC
+S
△OAB
=
1
2
BC•r+
1
2
AC•r+
1
2
AB•r=
1
2
(a+b+c)r.
∴r=
2S
a+b+c
.
(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在四边形ABCD中,⊙O
1
与⊙O
2
分别为△ABD与△BCD的内切圆,⊙O
1
与△ABD切点分别为E、F、G,设它们的半径分别为r
1
和r
2
,若∠ADB=90°,AE=4,BC+CD=10,S
△DBC
=9,r
2
=1,求r
1
的值.
0
253751
253759
253765
253769
253775
253777
253781
253787
253789
253795
253801
253805
253807
253811
253817
253819
253825
253829
253831
253835
253837
253841
253843
253845
253846
253847
253849
253850
253851
253853
253855
253859
253861
253865
253867
253871
253877
253879
253885
253889
253891
253895
253901
253907
253909
253915
253919
253921
253927
253931
253937
253945
366461
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案