题目内容
(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.
(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?
(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.
考点:四边形综合题
专题:
分析:(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;
(2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≌△QPE,根据全等三角形的性质即可得出结论;
(3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.
(2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≌△QPE,根据全等三角形的性质即可得出结论;
(3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.
解答:
(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠PCE=45°,∠PEQ=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
,
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(2)成立.
理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠PCE=45°,∠PEC=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
,
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(3)能.
证明:如图3,延长BP交DC于G,
∵点Q在DC的延长线上,
∴∠PCQ>90°,
∴等腰△PCQ中,PC=QC,
∴∠1=∠2,
∵∠BPQ=90°,
∴∠1+∠5=90°,∠2+∠3=90°,
∵∠1=∠2,
∴∠5=∠3,
在正方形ABCD中,AB∥DC,
∴∠4=∠5,
∴∠4=∠3,
∴AP=AB=1.
∵∠PCE=45°,∠PEQ=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
|
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(2)成立.
理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠PCE=45°,∠PEC=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
|
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(3)能.
证明:如图3,延长BP交DC于G,
∵点Q在DC的延长线上,
∴∠PCQ>90°,
∴等腰△PCQ中,PC=QC,
∴∠1=∠2,
∵∠BPQ=90°,
∴∠1+∠5=90°,∠2+∠3=90°,
∵∠1=∠2,
∴∠5=∠3,
在正方形ABCD中,AB∥DC,
∴∠4=∠5,
∴∠4=∠3,
∴AP=AB=1.
点评:本题考查的是四边形综合题,涉及到直角三角形的性质、正方形的判定与性质、全等三角形的判定等知识,难度适中.
练习册系列答案
相关题目
将抛物线y=-
x2+2x-5配成y=a(x-h)2+k的形式为( )
| 1 |
| 3 |
A、y=-
| ||
B、y=-
| ||
C、y=-
| ||
D、y=-
|
平行四边形的一条边长是10cm,那么它的两条对角线的长可能是( )
| A、6cm和8cm |
| B、10cm和20cm |
| C、8cm和12cm |
| D、12cm和32cm |