题目内容

4.如图,AB交CD于O,OE⊥AB.
(1)若∠EOD=30°,求∠AOC的度数;
(2)若∠AOC:∠BOC=2:3,求∠EOD的度数.

分析 (1)利用垂直可先求得∠BOD,再根据对顶角相等可求得∠AOC;
(2)由条件可先求得∠AOC,再利用对顶角相等可求得∠BOD,再由垂直的定义可求得∠EOD.

解答 解:
(1)∵OE⊥AB,
∴∠EOB=90°,
又∵∠EOD=30°,
∴∠BOD=60°,
又∵∠BOD=∠AOC (对顶角相等),
∴∠AOC=60°;
(2)∵∠AOC+∠BOC=180°,
若∠AOC:∠BOC=2:3,
∴∠AOC=$\frac{2}{3+2}$×180°=72°,
又∵∠BOD=∠AOC (对顶角相等),
∴∠BOD=72°,
∴∠EOD=90°-72°=18°.

点评 本题主要考查对顶角的性质和垂直的定义,掌握对顶角相等是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网