题目内容

18.如图,在正方形ABCD中,点E是AD边上的一点,AF⊥BE于F,CG⊥BE于G.
(1)若∠FAE=20°,求∠DCG的度数;
(2)猜想:AF,FG,CG三者之间的数量关系,并证明你的猜想.

分析 (1)由正方形的性质求得∠ABC=∠D=90°,根据三角形的外角定理求得∠FED,再根据四边形内角和求得结论;
(2)由∠ABF+∠CBG=90°,∠CBG+∠BCG=90°,证得∠ABF=∠BCG,再证得在ABF≌△BCG,AF=BG,由全等三角形的性质证得BF=CG,根据线段的和差和等量代换即可求得结论.

解答 解:(1)∵四边形ABCD是正方形,∴
∠ABC=∠D=90°,
∵AF⊥BE,CG⊥BE,
∴∠AFE=∠CGE=90°,
∵∠FAE=20°,
∴∠FED=∠FAE+∠AFE=20°+90°=110°,
∴∠DCG=360°-∠D-∠FED-∠CGE=360°-90°-110°-90°=70°;
(2)猜想:CG=AF+FG,
证明:∵∠ABF+∠CBG=90°,∠CBG+∠BCG=90°,
∴∠ABF=∠BCG,
在△ABF和△BCG中$\left\{\begin{array}{l}{∠AFB=∠BGC}\\{∠ABF=∠BCG}\\{AB=BC}\end{array}\right.$
∴ABF≌△BCG(AAS),
∴AF=BG,BF=CG,
∴CG=BF=BG+FG=AF+FG.

点评 本题主要考查了正方形的性质,三角形外角和定理,四边形内角和,全等三角形的判定和性质,能根据互为余角的关系证得∠ABF=∠BCG是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网