题目内容

15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1≥y2的x的取值范围为(  )
A.x≥1B.x≥2C.x≤1D.x≤2

分析 在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.

解答 解:∵直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),
∴当x=1时,y1=y2=2;
∴当y1≥y2时,x≥1.
故选A.

点评 此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网