题目内容
15.若关于x,y的方程mx+ny=6,的两组解是$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,则m-n的算术平方根是$\sqrt{3}$.分析 首先把$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$代入mx+ny=6,应用加减消元法,求出m、n的值各是多少;然后根据把求出的m、n的值代入m-n,求出m-n的算术平方根是多少即可.
解答 解:∵x,y的方程mx+ny=6,的两组解是$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,
∴$\left\{\begin{array}{l}{m+2n=6(1)}\\{2m-2n=6(2)}\end{array}\right.$,
(1)+(2),可得3m=12,
解得m=4,
把m=4代入(1),可得4+2n=6,
解得n=1,
∴$\left\{\begin{array}{l}{m+2n=6(1)}\\{2m-2n=6(2)}\end{array}\right.$的解是$\left\{\begin{array}{l}{m=4}\\{n=1}\end{array}\right.$,
∴m-n的算术平方根是:
$\sqrt{4-1}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 此题主要考查了二元一次方程组的解,以及算术平方根的求法,要熟练掌握,注意加减消元法解二元一次方程组的应用.
练习册系列答案
相关题目