题目内容

11.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.

分析 (1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)
(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.

解答 解:(1)BC+CD=$\sqrt{2}$AC;
理由:如图1,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=45°,
∴AB=AD,∠BAD=180°-∠ABD-∠ADB=90°,
∵∠ACB=∠ACD=45°,
∴∠ACB+∠ACD=90°,
∴∠BAD+∠BCD=180°,
∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,
∴∠ABC=∠ADE,
在△ABC和△ADE中,$\left\{\begin{array}{l}{AB=AD}\\{∠ABC=∠ADE}\\{BC=DE}\end{array}\right.$,
∴△ABC≌△ADE(SAS),
∴∠ACB=∠AED=45°,AC=AE,
∴△ACE是等腰直角三角形,
∴CE=$\sqrt{2}$AC,
∵CE=CD+DE=CD+BC,
∴BC+CD=$\sqrt{2}$AC;
(2)BC+CD=2AC•cosα.理由:如图2,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=α,
∴AB=AD,∠BAD=180°-∠ABD-∠ADB=180°-2α,
∵∠ACB=∠ACD=α,
∴∠ACB+∠ACD=2α,
∴∠BAD+∠BCD=180°,
∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,
∴∠ABC=∠ADE,
在△ABC和△ADE中,$\left\{\begin{array}{l}{AB=AD}\\{∠ABC=∠ADE}\\{BC=DE}\end{array}\right.$,
∴△ABC≌△ADE(SAS),
∴∠ACB=∠AED=α,AC=AE,
∴∠AEC=α,
过点A作AF⊥CE于F,
∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,
∴CE=2CF=2AC•cosα,
∵CE=CD+DE=CD+BC,
∴BC+CD=2AC•cosα.

点评 此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道综合性较强的题目.

练习册系列答案
相关题目
3.数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
探究一:求不等式|x-1|<2的解集
(1)探究|x-1|的几何意义
如图①,在以O为原点的数轴上,设点A′对应的数是x-1,由绝对值的定义可知,点A′与点O的距离为|x-1|,可记为A′O=|x-1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x-1|.因此,|x-1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.
(2)求方程|x-1|=2的解
因为数轴上3和-1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,-1.
(3)求不等式|x-1|<2的解集
因为|x-1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.
请在图②的数轴上表示|x-1|<2的解集,并写出这个解集.
探究二:探究$\sqrt{(x-a)^{2}+(y-b)^{2}}$的几何意义
(1)探究$\sqrt{{x}^{2}+{y}^{2}}$的几何意义
如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO=$\sqrt{O{P}^{2}+P{M}^{2}}$=$\sqrt{|x{|}^{2}+|y{|}^{2}}$=$\sqrt{{x}^{2}+{y}^{2}}$,因此,$\sqrt{{x}^{2}+{y}^{2}}$ 的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO.
(2)探究$\sqrt{(x-1)^{2}+(y-5)^{2}}$的几何意义
如图④,在直角坐标系中,设点A′的坐标为(x-1,y-5),由探究二(1)可知,A′O=$\sqrt{(x-1)^{2}+(y-5)^{2}}$,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=$\sqrt{(x-1)^{2}+(y-5)^{2}}$,因此$\sqrt{(x-1)^{2}+(y-5)^{2}}$的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离AB.
(3)探究$\sqrt{(x+3)^{2}+(y-4)^{2}}$的几何意义
请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.
(4)$\sqrt{(x-a)^{2}+(y-b)^{2}}$的几何意义可以理解为:点(x,y)与点(a,b)之间的距离.
拓展应用:
(1)$\sqrt{(x-2)^{2}+(y+1)^{2}}$+$\sqrt{(x+1)^{2}+(y+5)^{2}}$的几何意义可以理解为:点A(x,y)与点E(2,-1)的距离和点A(x,y)与点F(-1,-5)(填写坐标)的距离之和.
(2)$\sqrt{(x-2)^{2}+(y+1)^{2}}$+$\sqrt{(x+1)^{2}+(y+5)^{2}}$的最小值为5(直接写出结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网