题目内容

已知
1
x
+
1
y+z
=
1
2
1
y
+
1
z+x
=
1
3
1
z
+
1
x+y
=
1
4
,求
2
x
+
3
y
+
4
z
的值.
考点:对称式和轮换对称式
专题:
分析:
1
x
+
1
y+z
=
1
2
1
y
+
1
z+x
=
1
3
1
z
+
1
x+y
=
1
4
,易得
1
x
=
y+z
2(x+y+z)
1
y
=
z+x
3(x+y+z)
1
z
=
x+y
4(x+y+z)
,然后代入即可求得答案.
解答:解:∵
1
x
+
1
y+z
=
1
2

x+y+z
x(y+z)
=
1
2

∴x(y+z)=2(x+y+z),
∴x=
2(x+y+z)
y+z

即:
1
x
=
y+z
2(x+y+z)

同理:
1
y
=
z+x
3(x+y+z)
1
z
=
x+y
4(x+y+z)

2
x
+
3
y
+
4
z
=
2(y+z)
2(x+y+z)
+
3(z+x)
3(x+y+z)
+
4(x+y)
4(x+y+z)
=
y+z
x+y+z
+
x+z
x+y+z
+
x+y
x+y+z
=
2(x+y+z)
x+y+z
=2.
点评:此题考查了对称式与轮换对称式的知识.此题难度适中,解题的关键是得到:
1
x
=
y+z
2(x+y+z)
1
y
=
z+x
3(x+y+z)
1
z
=
x+y
4(x+y+z)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网