题目内容

15.如图,已知Rt△ABC中,∠C=90°,∠C沿AD对折得∠AMD,MA平分∠BAD,连接MB,其中AC=8,BD=10,△ABM的面积是20.

分析 延长DM交AB于N,由翻折性质得∠C=∠AMD=90°,根据角平分线的定义得到∠DAM=∠NAM,推出△ADM≌△ANM,得到DM=MN,于是得到S△AMB=$\frac{1}{2}$S△ABD=$\frac{1}{2}$BD•AC=$\frac{1}{2}$×10×8=40,

解答 解:延长DM交AB于N,由翻折性质得:∠C=∠AMD=90°,
∵MA平分∠BAD,
∴∠DAM=∠NAM,
在△ADM和△ANM中,
$\left\{\begin{array}{l}{∠AMD=∠AMN=90°}\\{AM=AM}\\{∠DAM=∠NAM}\end{array}\right.$,
∴△ADM≌△ANM,
∴DM=MN,
∴S△AMN=$\frac{1}{2}$S△ADN,S△BMN=$\frac{1}{2}$S△BDN
∴S△AMB=$\frac{1}{2}$S△ABD=$\frac{1}{2}×$$\frac{1}{2}$BD•AC=$\frac{1}{2}×$$\frac{1}{2}$×10×8=20.
故答案为:20.

点评 本题考查了翻折变换-折叠问题,全等三角形的判定和性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网