题目内容

如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )

A. 甲、乙 B. 甲、丙

C. 乙、丙 D. 甲、乙、丙

C 【解析】试题解析:由图形可知,甲有一边一角,不能判断两三角形全等, 乙有两边及其夹角,能判断两三角形全等, 丙得出两角及其一角对边,能判断两三角形全等, 根据全等三角形的判定得,乙丙正确. 故选C.
练习册系列答案
相关题目

如图所示,F、C在线段BE上,且∠1=∠2,BC=EF.若要根据“SAS”使△ABC≌△DEF,还需要补充的条件是________.

AC=DF 【解析】已知∠1=∠2,BC=EF,根据“SAS”使△ABC≌△DEF,还需要补充的条件是AC=DF.

小颖和小明做游戏:一个不透明的袋子中装有6个完全一样的球,每个球上分别标有1,2,2,3,4,5,从袋中任意摸出一个球,然后放回.规定:若摸到的球上所标数字大于3,则小颖赢,否则小明赢.你认为这个游戏公平吗?为什么?如果不公平,请修改游戏规则,使游戏公平.

游戏不公平.修改规则如下:方法一:若摸到的球上所标数字小于3,则小颖赢;否则小明赢.方法二:若摸到的球上所标数字是偶数,则小颖赢,否则小明赢. 【解析】试题分析:分别计算出小颖赢和小明赢的概率即可;通过比较概率的大小来判断游戏是否公平. 试题解析:【解析】 P(小颖赢)=,P(小明赢)=,所以不公平. 修改规则如下:方法一:若摸到的球上所标数字小于3,则小颖赢;否则小明赢. ...

如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积为____.

7 【解析】试题分析:如下图,连接A1C,B1A,C1B,,因B是线段B1C的中点,所以B1B="BC." △A1B1A和△AB1B等底同高,根据等底同高的两个三角形面积相等可得S△B1AB=S△ABC=1;同理可得S△A1B1A=S△AB1B=1;所以=S△A1B1A+S△AB1B=1+1=2;同理可得S△C1CB1=2, S△C1AA1=2. S△A1B1C1= S△A1BB1+ ...

如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中(  )

A. 全部正确 B. 仅①和②正确 C. 仅①正确 D. 仅①和③正确

B 【解析】∵PR=PS,PR⊥AB于R,PS⊥AC于S, ∴∠PAB=∠PAC,∠PSA=∠PRA=90°, 在△PAR和△PAS中, , ∴△PAR≌△PAS(AAS), ∴AR=AS,∴①正确; ∵AQ=PQ, ∠CAP=∠APQ, ∵∠CAP=∠BAP, ∴∠BAP=∠APQ, ∴PQ∥AB,∴②正确; ∵PR⊥AB,...

一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个?

白球有9个,红球有14个. 【解析】【试题分析】设白球有x个,红球有y个,根据“白球的个数比红球少,但白球的2倍比红球多”,得 ,解得7.5<x<12,则x可以取8,9,10,11. 由于2x=60-3y=3(20-y) 得2x应是3的倍数,则x只能取9,y = = 14 即白球有9个,红球有14个. 【试题解析】 设白球有x个,红球有y个,由题意,得 由第一个...

-3x≤6的解集是 ( )

A 【解析】试题分析:由-3x≤6解得x≥-2,即可得到结果. -3x≤6解得x≥-2,故选A.

已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则AE= _________.

3-1 【解析】试题分析:∵∠F=45°,BC=3, ∴CF=3,又EF=4, 则EC=1, ∵BC=3,∠A=30°, ∴AC=, 则AE=-1. 故答案为: -1.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网