题目内容

16.如图,?ABCD中,AE=EF=FB,CE交DF,DB于M,N,则EM:MN:NC=(  )
A.5:4:12B.5:3:12C.4:3:5D.2:1:4

分析 先根据平行四边形的性质得AB=CD,AB∥CD,则CD=3EF,EB:CD=2:3,再利用EF∥CD得到EM:MC=EF:CD=1:3,若设EM=t,则MC=3t,EC=4t,接着利用EB∥CD得到EN:NC=BE:CD=2:3,则可用t表示EN=$\frac{8}{5}$t,NC=$\frac{12}{5}$t,所以MN=EN-EM=$\frac{3}{5}$t,然后计算EM:MN:NC.

解答 解:∵四边形ABCD为平行四边形,
∴AB=CD,AB∥CD,
而AE=EF=FB,
∴CD=3EF,EB:CD=2:3,
∵EF∥CD,
∴EM:MC=EF:CD=1:3,
设EM=t,则MC=3t,EC=4t,
∵EB∥CD,
∴EN:NC=BE:CD=2:3,
∴EN=$\frac{2}{5}$CE=$\frac{8}{5}$t,NC=$\frac{3}{5}$EC=$\frac{12}{5}$t,
∴MN=EN-EM=$\frac{8}{5}$t-t=$\frac{3}{5}$t,
∴EM:MN:NC=t:$\frac{3}{5}$t:$\frac{12}{5}$t=5:3:12.
故选B.

点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;再运用相似三角形的性质时主要利用相似比计算线段的长.也考查了平行四边形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网