题目内容
14.求证:(1)BE=CF;
(2)四边形BECF是平行四边形.
分析 (1)通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF;
(2)由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.易得四边形BECF是平行四边形.
解答 证明:(1)∵BE⊥AD,CF⊥AD,
∴∠AEB=∠DFC=90°,
∵AB∥CD,
∴∠A=∠D,
在△AEB与△DFC中,
$\left\{\begin{array}{l}{∠AEB=∠DFC}\\{AE=DF}\\{∠A=∠D}\end{array}\right.$,
∴△AEB≌△DFC(ASA),
∴BE=CF;
(2)∵BE⊥AD,CF⊥AD,
∴BE∥CF,
∵BE=CF,
∴四边形BECF是平行四边形.
点评 本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.
练习册系列答案
相关题目
2.
如图,在△ABC中,AB=AC,D是△ABC的外心,连接AD、CD.将△ADC绕点A顺时针旋转到△AEB,连接ED.
(1)求证:△AED∽△ABC;
(2)连接BD,判断四边形AEBD的形状并证明.
(1)求证:△AED∽△ABC;
(2)连接BD,判断四边形AEBD的形状并证明.
6.
如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边的中点,连接EF,若EF=$\sqrt{3}$,BD=4,则菱形ABCD的边长为( )
| A. | 2$\sqrt{3}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | 7 |
3.
如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP长度为( )
| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{4}$ |