题目内容
15.(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2$\sqrt{5}$,求⊙O的半径.
分析 (1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;
(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC推出52-r2=(2$\sqrt{5}$)2-(5-r)2,求出r.
解答 解:(1)AB=AC,理由如下:
连接OB.如图1,![]()
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,如图2,![]()
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2$\sqrt{5}$)2-(5-r)2,
∴52-r2=(2$\sqrt{5}$)2-(5-r)2,
解得:r=3.
答:⊙O的半径为3.
点评 本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.
练习册系列答案
相关题目
20.若关于x,y的二元一次方程组$\left\{\begin{array}{l}{3x+y=1+a}\\{x+3y=3}\end{array}\right.$的解满足x+y<505,则a的取值范围( )
| A. | a>2016 | B. | a<2016 | C. | a>505 | D. | a<505 |