题目内容

6.实验与探究
操作发现:
如图(1)某数学活动小组的同学将正方形A′B′C′O的顶点O与正方形ABCD的中心重合,将正方形A′B′C′O绕点O做旋转实验,发现了如下数学问题:
如图(2),在四边形ABCD中,若AB=AD,∠BAD=∠BCD=90°,则BC、CD、AC具有一定的数量关系:BC+CD=$\sqrt{2}$AC.
数学思考:
(1)请你写出图(2)中数学活动小组的同学发现的结论:BC+CD=AC.(不要求说理或证明)
(2)如图(3),在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,则BC、CD、AC具有怎样的数量关系,请给出证明过程.
拓展探究:
如图(4),在四边形ABCD中,AB=AD,∠BAD+∠BCD=180°,且BD=kAB,则BC、CD、AC具有怎样的数量关系?请说明理由.

分析 (1)构造全等三角形,根据邻补角的定义,判断出三角形全等,由△ABD,△BCD为直角三角形,根据勾股定理简单计算即可.
(2)构造全等三角形,根据邻补角的定义,判断出三角形全等,在判断出△AHC为等边三角形即可,
拓展探究:构造全等三角形,从而得出BH=CD,AC=AH,∠BAH=∠DAC,再根据两边对应成比例,夹角相等判断出三角形相似,得出$\frac{HC}{AH}=\frac{BD}{AB}$从而得出结论,

解答 数学思考:(1)故答案为BC+CD=$\sqrt{2}$AC,
(2)BC+CD=AC,

理由:延长CB到H,使BH=CD.
∵∠BAD+∠BCD=60°+120°=180°
∴∠ABC+∠ADC=180°
又∵∠ABH+∠ABC=180°
∴∠ABH=∠ADC
又∵AB=AD
∴△ABH≌△ADC
∴BH=CD,AC=AH,∠BAH=∠DAC
∴∠HAC=∠BAD=60°
∴△AHC为等边三角形
∴BC+CD=BC+BH=AC.
故答案为BC+CD=AC.
拓展探究:
BC+CD=kAC
理由:延长CB到H,使BH=CD.

∵∠BAD+∠BCD=180°
∴∠ABC+∠ADC=180°
又∵∠ABH+∠ABC=180°
∴∠ABH=∠ADC
又∵AB=AD
∴△ABH≌△ADC
∴BH=CD,AC=AH,∠BAH=∠DAC
∴∠HAC=∠BAD,$\frac{AH}{AC}=\frac{AB}{AD}$,
∴△AHC∽△ABD
∴$\frac{HC}{AH}=\frac{BD}{AB}$=k,
∴HC=kAH=kAC,
∴BC+CD=kAC.

点评 本题是四边形的综合题,涉及到全等三角形的性质和判定,相似三角形的性质和判定,如:由BH=CD,AC=AH,∠BAH=∠DAC得出∠HAC=∠BAD,$\frac{AH}{AC}=\frac{AB}{AD}$,从而△AHC∽△ABD得到$\frac{HC}{AH}=\frac{BD}{AB}$,勾股定理,等边三角形的判断方法,解本题的关键是构造全等三角形△ABH≌△ADC,本体的难点是作辅助线.

练习册系列答案
相关题目
16.【探究】:某商场秋季计划购进一批进价为每条40元的围巾进行销售根据销售经验,应季销售时,若每条围巾的售价为60元,则可售出400条;若每条围巾的售价每提高1元,销售量相应减少10条.
(1)假设每条围巾的售价提高x元,那么销售每条围巾所获得的利润是20+x元,销售量是400-10x条(用含x的代数式表示).
(2)设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每条围巾的售价.
【拓展】:根据销售经验,过季处理时,若每条围巾的售价定为30元亏本销售,可售出50条;若每条围巾的售价每降低1元,销售量相应增加5条,
(1)若剩余100条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每条围巾的售价应是20元.
(2)若过季需要处理的围巾共m条,且100≤m≤300,过季亏损金额最小是40m-2000元;(用含m的代数式表示)
【延伸】:若商场共购进了500条围巾且销售情况满足上述条件,如果应季销售利润在不低于8000元的条件下:
(1)没有售出的围巾共m条,则m的取值范围是:100≤m≤300;
(2)要使最后的总利润(销售利润=应季销售利润-过季亏损金额)最大,则应季销售的售价是60元.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是$(-\frac{b}{2a},\frac{{4ac-{b^2}}}{4a})$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网