ÌâÄ¿ÄÚÈÝ
13£®£¨1£©ÇóA£¬B£¬CÈýµãµÄ×ø±êºÍÇúÏßy2µÄ±í´ïʽ£»
£¨2£©ÎÒÃÇ°ÑÆäÖÐÒ»Ìõ¶Ô½ÇÏß±»ÁíÒ»Ìõ¶Ô½ÇÏß´¹Ö±ÇÒÆ½·ÖµÄËıßÐγÆÎªóÝÐΣ®¹ýµãC×÷xÖáµÄƽÐÐÏßÓëÇúÏßy1½»ÓÚÁíÒ»¸öµãD£¬Á¬½ÓAD£®ÊÔÎÊ£ºÔÚÇúÏßy2ÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃËıßÐÎACDMΪóÝÐΣ¿Èô´æÔÚ£¬¼ÆËã³öµãMµÄºá×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©Çó³öµãC£¬y2ÓëxÖáµÄ½»µã×ø±ê£¬ÔÙÓÉ´ý¶¨ÏµÊý·¨Çó³öº¯Êýy2½âÎöʽ¼´¿É£»
£¨2£©ÏÈÈ·¶¨³öµãPµÄ×ø±êºÍCPµÄ½âÎöʽ£¬´Ó¶øÇó³öMµãµÄºá×ø±ê£®
½â´ð ½â£º£¨1£©ÔÚy1=$\frac{\sqrt{3}}{3}$£¨x2-2x-3£©ÖУ¬
Áîy1=0£¬ÔòÓÐ$\frac{\sqrt{3}}{3}$£¨x2-2x-3£©=0£¬
½âµÃx=-1»òx=3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡ßCΪÇúÏßy1ÓëyÖáµÄ½»µã£¬
¡àC£¨0£¬-$\sqrt{3}$£©£®
ÓÖ¡ßÇúÏßy1ÓëÇúÏßy2¹ØÓÚÖ±Ïßx=3¶Ô³Æ£¬
¡àÇúÏßy2ÓëxÖáÁ½½»µã×ø±ê·Ö±ðΪ£¨3£¬0£©Ó루7£¬0£©£¬
¡ày2=$\frac{\sqrt{3}}{3}$£¨x-3£©£¨x-7£©=$\frac{\sqrt{3}}{3}$£¨x2-10x+21£©£¨£¨x¡Ý3£©
£¨2£©Èçͼ£¬![]()
¹ýµãD×÷DG¡ÍxÖᣬ¹ýµãP×÷PH¡ÍxÖᣬ
¡àPH=$\frac{1}{2}$DG=$\frac{\sqrt{3}}{2}$£¬AH=$\frac{1}{2}$AG=$\frac{3}{2}$£¬
¡àOH=AH-AO=$\frac{1}{2}$£¬
¡àP£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬
¡àÉèÏß¶ÎADµÄ´¹Ö±Æ½·ÖÏßCPµÄ½âÎöʽΪy=kx+m£¬
¡ßµãC£¨0£¬-$\sqrt{3}$£©£¬
¡à$\left\{\begin{array}{l}{\frac{k}{2}+m=\frac{\sqrt{3}}{2}}\\{m=-\sqrt{3}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{k=\sqrt{3}}\\{m=-\sqrt{3}}\end{array}\right.$£¬
¡àCPµÄ½âÎöʽΪy=$\sqrt{3}$x-$\sqrt{3}$£¬
¡ßy2=$\frac{\sqrt{3}}{3}$£¨x2-10x+21£©Óë¡àx=$\frac{13+\sqrt{73}}{2}$»òx=$\frac{13-\sqrt{73}}{2}$£¨Éᣬ¡ßx£¼3£©£®
¡àxM=$\frac{13+\sqrt{73}}{2}$£®
µãÆÀ ´ËÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬Ö÷Òª¿¼²éÁËÈ·¶¨º¯ÊýµÄ½»µã×ø±ê£¬ºÍ´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Çóº¯Êý½âÎöʽÊǽⱾÌåµÄ¹Ø¼ü£®