题目内容
5.下列各式,计算正确的是( )| A. | $\sqrt{2}+\sqrt{3}=\sqrt{5}$ | B. | 3$\sqrt{2}-\sqrt{2}$=3 | C. | 2$\sqrt{3}×3\sqrt{3}=6\sqrt{3}$ | D. | ($\sqrt{8}-\sqrt{6}$)$÷\sqrt{2}=2-\sqrt{3}$ |
分析 计算出各个选项中的正确结果,即可得到哪个选项是正确.
解答 解:∵$\sqrt{2}$+$\sqrt{3}$不能合并,故选项A错误;
∵3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$,故选项B错误;
∵2$\sqrt{3}$×$3\sqrt{3}$=18,故选项C错误;
∵$(\sqrt{8}-\sqrt{6})÷\sqrt{2}$=$\sqrt{4}$-$\sqrt{3}$=2-$\sqrt{3}$,故选项D正确;
故选D.
点评 本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.
练习册系列答案
相关题目
20.若a>b,则下列不等式一定成立的是( )
| A. | a+b>b | B. | $\frac{b}{a}$>1 | C. | ac2>bc2 | D. | b-a<0 |
17.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是( )
| A. | $\left\{\begin{array}{l}{x+y=50}\\{10(x+y)=320}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=50}\\{6x+10y=320}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=50}\\{6x+y=320}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=50}\\{10x+6y=320}\end{array}\right.$ |
15.以方程组$\left\{\begin{array}{l}y-x=1\\ y+x=2\end{array}\right.$的解为坐标的点(x,y)在第( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |