题目内容

12.如图,已知△ABC内接于⊙O,点I是△ABC的内心,AI的延长线交BC于点E,交⊙O于点D.
求证:DB=DI=DC.

分析 连接BI,CI,要证明ID=BD=DC,只要求得∠BID=∠IBD,再根据角平分线的性质即可得到结论.

解答 证明:∵点I是△ABC的内心,
∴∠BAD=∠CAD,∠ABI=∠CBI,
∵∠CBD=∠CAD,
∴∠BAD=∠CBD,
∴∠BID=∠ABI+∠BAD,
∴∠ABI=∠CBI,∠BAD=∠CAD=∠CBD,
∵∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD,
∴ID=BD,
∵∠BAD=∠CAD,
∴$\widehat{BD}$=$\widehat{CD}$,
∴CD=BD,
∴DB=DC=DI.

点评 本题考查的是三角形的内切圆与内心,根据题意作出辅助线,构造出等腰三角形是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网